UNIDADES Y MEDICIONES

Introducción

- Imagina que alguien te esta dando indicaciones para llegar a su casa y te dice lo siguiente: maneja a lo largo de la 11 Sur durante un rato y doblas a la derecha en uno de los semáforos. Luego sigue derecho durante un largo camino.
- Supón que estas cocinando un pastel. ¿Podrías seguir la siguiente receta?: bata algunos huevos, agregue un poco de azúcar, algo de mantequilla y una buena cantidad de harina y horneelo un rato en un horno bastante caliente.
- ¿te gustaría tratar con un banco que te enviara un informe al final del mes que te dijera: aun tiene dinero en su cuenta, aunque no mucho?

Importancia de la Medicion

La física intenta describir la naturaleza de una forma objetiva por medio de las mediciones. Gran parte de nuestro conocimiento descansa sobre una base de medición ingeniosa y un cálculo sencillo.

- **Medir.-** Procedimiento mediante el cual se puede conocer la magnitud de un objeto comparándolo con otro de la misma especie que le sirve de base o patrón.
- **Magnitud:** Es toda propiedad de los cuerpos que se puede medir. Por ejemplo: temperatura, velocidad, masa, peso, etc.
- Unidades estándar: aquellas que se aceptan de manera oficial.
- Patrones antiguos de medición:

<u>Longitud</u>	<u>masa</u>	<u>tiempo</u>
Codos	cuarterones	lunas
varas	arrobas	soles
pies	quintales	lustros
jemes	cargas	
brazadas		

- En 1960 se creo estableció un solo sistema de unidades para ser utilizado por todos los países: El Sistema Internacional de Unidades (SI) (M.K.S.).
- Tambien se utilizan el sistema cegesimal (C.G.S.) y el sistema inglés y los sistemas técnicos, gravitacionales o de ingeniería (peso).

Magnitudes Fundamentales y Derivadas

Magnitudes Fundamentales: sirven de base para obtener las demás magnitudes que utiliza la física.

Magnitud	Unidad	Símbolo
Longitud	metro	m
Masa	kilogramo	kg
Tiempo	segundo	S
Intensidad de corriente eléctrica	ampere	Α
Temperatura termodinámica	kelvin	K
Intensidad luminosa	candela	cd
Cantidad de materia	mol	mol

Angulo Plano (2 dimensiones) Angulo Sólido (3 dimensiones)

Longitud: magnitud fundamental para medir distancias o dimensiones en el espacio. Es la distancia entre dos puntos.

Masa: magnitud fundamental que se utiliza para describir cantidades de materia.

Tiempo: es el flujo hacia delante de los eventos, es la cuarta dimensión

• Magnitudes Derivadas: Se obtienen cuando se multiplican o dividen dos o más magnitudes fundamentales.

Magnitud	Unidad	Abreviatura	Expresión SI
Superficie	metro cuadrado	m²	m²
Volumen	metro cúbico	m³	m³
Velocidad	metro por segundo	m/s	m/s
Fuerza	newton	N	Kg·m/s²
Energía, trabajo	julio	J	Kg·m²/s²
Densidad	kilogramo/metro cúbico	Kg/m³	Kg/m³

Sistemas Absolutos

Se conocen asi porque usan como unidades fundamentales la longitud, la masa y el tiempo.

- Sistema Internacional
- Sistema C.G.S.
- Sistema Ingles

Magnitud	SI	C.G.S.	Inglés
Longitud	metro (m)	centímetro (cm)	pie (ft)
Masa	kilogramo (kg)	gramo (g)	libra (lb)
Tiempo	segundo (s)	segundo (s)	segundo (s)
Área o Superficie	m ²	cm ²	pie ²
Volumen	m ³	cm ³	pie ³
Velocidad	m/s	cm/s	pie/s
Aceleración	m/s²	cm/s ²	pie/s²
Fuerza	kg·m/s² = newton	g·cm/s² = dina	libra·pie/s² = poundal
Trabajo y Energia	N·m= joule	dina·cm = ergio	poundal·pie
Presion	$N/m^2 = pascal$	dina/cm ² = baria	poundal/pie ²
Potencia	Joule/s=watt	ergio/s	poundal·pie/s

Múltiplos y Submúltiplos:

Múltiplos		
Prefijos	Símbolo	Equivalencia
yotta	Y	10 ²⁴

zetta	Z	10 ²¹
exa	Е	10 ¹⁸
peta	Р	10 ¹⁵
tera	Т	1012
giga	G	10 ⁹
mega	M	10 ⁶
kilo	k	10 ³
hecto	h	10 ²
deca	da	10
Submúltip		
los		
deci	d	10-1
centi	С	10-2
mili	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²
femto	f	10 ⁻¹⁵
atto	а	10 ⁻¹⁸
zepto	Z	10 ⁻²¹
yocto	У	10 ⁻²⁴

Sistemas de Unidades Técnicos

Se caracterizan porque utilizan el peso como magnitud fundamental y la masa la consideran como unidad derivada.

- Sistema MKSg
- Sistema Británico Gravitacional (Sbg)

Conversión de Unidades de un sistema a otro

Para convertir unidades de un sistema a otro se utilizan los factores de conversión correspondientes.

CONVERSION DE UNIDADES

LONGITUD	m	in	ft			
1 m	1	39,3701	3,2808			
1 in	0,0254	1	0,0833			
1 ft	0,3048	12	1	m = metro		
SUPERFICIE	m ²	in ²	ft²	in = pulgada	ı	
1 m ²	1	1.550	10,7639	ft ≈ pie		
1 in ²	0,000645	1	0,0069	kg = kilograi	Ott	
1 ft ²	0,0929	144	1	lb = libra		
VOLUMEN	m ³	in ³	ft ³	oz = onza N = Newton		
1 m ³	1	61.023,74	35,31467	kgf = kilogra		
1 in ³	0,000016387	1	0,00057837	lbf = libra fu		
1 ft ³	0,028317	1.729	1	kPa ≃ kilo Pa	ascal	
MASA	kg	lb	oz	atm ≃ atmós	fera	
1 kg	1	2,20462	35,2740	s = segundo		
1 lb	0,453592	1	16	km = kilóme	dro	
1 oz	0,028349	0,0625	1	h ≠ hora		
DENSIDAD	kg/m³	lb/ft ³		mi(= milla W = vatìo		
1 kg/m ³	1	0,062428	1	hp = caballo	vapor	
1 lb/ft ³	16,0185	1		.,		
FUERZA	N	kgi	lbf	1 Pa = 1N/m	2	
1 N	1	0,102	0,224809			
1 kgf	9,81	1	2,204			
1 lbf	4,44822	0,4536	1			
PRESION	k Pa	kgf/m ²	lbf/ft ²	lbf/in²	atm	
k Pa	1	102	20,8854	0,145038	0,009869	
kgf/m²	0,00981	1	0,2048	0,00142	0,00009676	
lbf/ft ²	0,04788	4,883	1	0,00694	0,0004725	
lbf/in ²	6,895	703	144	1	0,06806	
atm	101,325	10.335,15	2.116,27	14,692	1	
VELOCIDAD	m/s	km/h	ft/s	mil/h		
1 m/s	1	3,6	3,28084	2,23694	1	
1 km/h	0,27777	1	0,91134	0,621371	1	
1 ft/s	0,3048	1,09728	1	0,681819		
1 mil/h	0,44704	1,609344	1,46666	1	ţ	
POTENCIA	w	hp	BTU/h		1	
1 W	1	0,0013410	3,41214			
1 hp	745,701	1	2.544,436			
1 BTU/h	0,293071	0,000393	1			

Ecuaciones y Análisis Dimensionales

Análisis Dimensional: Procedimiento mediante el cual se puede comprobar la consistencia dimensional de cualquier ecuación.

- Cualquier cantidad física puede expresarse en distintas unidades, dependiendo de la escala en que se este graduando el instrumento de medición. Sin embargo, todas ellas se refieren a la misma dimensión fundamental. (dimensión = magnitud)
- Ej: una distancia se puede expresar en metros, kilómetros, centímetros o pies, y todas ellas se refieren a longitud.
- El buen manejo de las dimensiones de las cantidades físicas en una formula física, nos permite comprobar que estas son correctas y que se trabajaron debidamente.
- Reglas:
 - 1. Las dimensiones de las cantidades físicas a ambos lados del signo de igualdad deben ser las mismas.
 - 2. Solo pueden sumarse o restarse cantidades físicas que sean de la misma dimensión.

Ejemplos:

- Ecuación dimensional para el área: A = (I) (I) = L·L = L²
- Ecuación dimensional para el volumen V = (I) (I) (I) = L·L·L = L³
- Ecuación dimensional para la velocidad:

Medición con métodos directos e indirectos

El uso de formulas son un ejemplo de los métodos indirectos de medición. Los cálculos son ejemplos de métodos indirectos de medición.

Error en las mediciones

- **Error de medición:** Es la diferencia que existe entre el valor verdadero o exacto de una magnitud y el valor obtenido al medirla.
- **Formas de reducir el error**: repetir la medición el mayor número de veces posible, ya que el promedio de las mediciones resultara más confiable que cualquiera de ellas sola.
- Clases de error:
 - 1. Errores sistemáticos: se deben a:
 - Defecto del instrumento de medición
 - Error de paralaje (incorrecta postura del observador)
 - Mal calibración del aparato
 - Error de escala debido al rango de precisión del instrumento empleado
 - 2. **Errores circunstanciales o aleatorios**: se deben a los efectos provocados por las variaciones de presión, humedad y temperatura del medio ambiente
- Tipos de errores
 - 1. Error absoluto: diferencia entre la medición y el valor promedio.
 - 2. Error relativo: cociente entre el error absoluto y el valor promedio.
 - 3. Error porcentual: error relativo multiplicado por 100, (porcentaje)
- Números exactos: son aquellos que no tienen ninguna incertidumbre ni error.
- **Números medidos:** son aquellos obtenidos a partir de procesos de medición y que generalmente tienen un grado de incertidumbre o error.
- **Cifras significativas:** numero de cifras conocidas confiables. Son los dígitos que se pueden leer directamente en el instrumento utilizado para hacer la medición.

Reglas para calcular las cifras significativas:

- 1. Los ceros al principio de un número no son significativos. Tan solo indican la colocación del punto decimal.
- 2. Los ceros dentro de un número sí son significativos.
- 3. Los ceros al final de un número, después del punto decimal son significativos.
- 4. En números enteros sin punto decimal que tienen al final uno o más ceros, los ceros pueden o no ser significativos. Para eliminar la ambigüedad se usa la notación científica.
- 5. El resultado final de una multiplicación o de una división debe tener el mismo número de cifras significativas que la cantidad con el menor número de cifras significativas utilizada en el cálculo.
- 6. El resultado final de una adición o sustracción debe tener el mismo número de lugares decimales que la magnitud con el menor número de lugares decimales que se utilizo en el cálculo.

Reglas de redondeo:

- 1. Si el digito siguiente a la última cifra significativa es 5 o mayor, la última cifra significativa se aumenta en 1.
- 2. Si el digito siguiente a la ultima cifra significativa es menor que 5, la ultima cifra significativa se queda igual.

FACTORES DE CONVERSIÓN ENTRE DIFERENTES SISTEMAS DE UNIDADES

MULTIPLICAR	POR	PARA OBTENER	MULTIPL	ICAR POR	PARA
					OBTENER
atmósfera	760,0	mm de mercurio	pulg de agua	0,002458	atmósferas
	29,92	pulgadas de mercurio		0,07355	
	33,90	pies de agua		0,002540	kg/cm ²
	1,0333	kgf/cm ²		5,202	lbf/pie ²
	14,70	lbf/pulg ²		0,03613	
bar	0,9869	atmósferas	kg	2,205	lb
	2089,0	lbf/pies ²			
., ,	14,50	lbf/pulg ²	1 6/ 2	0.0070	
centímetros	0,3937	pulgadas	kgf/cm ²	0,9678	_
centímetros de Hg	0,1316	atmósferas		32,81	pies agua
	0,4461	pies de agua		28,96	pulg mercurio
	136,0	kg/m ²		2048,00	lbf/pie ²
	27,85	lbf/pies ²		14,22	lbf/pulg ²
	0,1934	lbf/pulg ²	litus s tos in cet s	0.000500	
cm/seg	1,969	pies/min	litros/minuto	0,000588	
cm3	0,3281 0,00003531	pies/seg pie ³	lh/nio	0,004403	gal/seg
CIII3	0,00003531	pulg ³	lb/pie lb/gallon	1,448 8,337	kg/m gramo/cm³
	0,0102	m ³	lb/pulg	178,6	gramo/cm
	0,0000010	galones (US)	ib/puig	170,0	gramo/cm
	0,0002042	litros			
	0,002113	pinta (líquido)			
pie3/min	472.0	cm³/seg	lb/pulg ²	0,06804	atmósferas
pico/min	0,1247	gals/seg	lib/pulg	2,307	pies agua
	0,4720	litros/seg		2,036	pulg mercurio
	62,43	lb agua/min		0,07031	kgf/cm ²
	28,800	pulg ³ /seg		,,,,,,	l Kg#oiii
pie3/seg	448,831	gal/min			
pulgada3	13,39	cm ³			
J - 3	0,0005758	pie ³			
	0,00001639	m³			
	0,004329	galones (US)			
	0,01639	litros			
	0,03463	pinta (líquido)			
m3	35,31	pie ³			
	61023,00	pulg ³			
	264,2	galones			
	1000	litros			
	2113,00	pinta (líquido)			
pies de agua	0,02950	atmósferas			
	0,8826	pulgadas de Hg			
	0,03048	kg/cm ²			
	62,43	lbf/pie ²			
. , .		lbf/pulg ²			
pies/min	0,0580	cm/seg			
	0,01667	pie/seg			
4.5	0,3048	m/min			
galones (US)/min	0,1337	pie ³ /min			
	0,06308	litro/seg			
	8,0208	pie ³ /hora			

0,002228	pie ³ /seg		