

Explainer: Animating Font-Palette

Authors: , Munira Tursunova Dominik Röttsches
Contributors: Anders Hartvoll Ruud
Tracking Bug: crbug.com/1400620
Last update: 2023-05-14

Summary
The CSS font-palette property allows selection of a specific palette used to render a font. For
this property, CSS Fonts 4 defines the animation behavior of this property as discrete, which is
insufficient to achieve a smooth transition between two selected palettes. Similar to other color
transitions in CSS animating the font-palette property should happen by interpolating each of
the color record values between start and end palette.

In this explainer, we propose the smooth animation of the font-palette property using
declarative CSS. This makes the interpolation of the palette’s color values and thus the the use
of color fonts on the web more versatile and expressive. See section Examples for more details.

Motivation
Color fonts have vastly improved typographic expressiveness on the web. They provide web
authors with a variety of new features, like defining the palette of the font, that will allow them
to style glyph appearance flexibly, on top of what’s pre-defined by the font. Currently the
animation type of the font-palette property is discrete, meaning that there is no smooth
transition between the different color values of the font. Animating font palette will allow users
to enable smooth transition between the different font palette values, as seen in this example:

Without interpolation:

With interpolation:

mailto:moonira@google.com
mailto:drott@google.com
mailto:andruud@google.com
http://crbug.com/1400620
https://w3c.github.io/csswg-drafts/css-fonts/#font-palette-prop
https://www.w3.org/TR/web-animations/#animation-type

​ Page 2 of 9

Description

This is how animation of font-palette property
works now, it is a discrete jump between

base-palette 1 and 3.

Description

This is how animation of font-palette property
will work when the feature is implemented, each

of the base-palette colors will be interpolated.

We observe positive signals from web-developers on animating font-palette:

●​ In his article on CSS Tricks, Ollie Williams expressed his interest, describing animatable
palettes as a dream coming true

●​ Scott Kellum (of typetura.com) has also been suggesting it as a useful feature for the
web (origin: a Twitter thread and email conversation, Scott in the meantime deleted their
Twitter account).

Animating the font-palette property manually is rather complicated: in order for animation to
work, web authors need to retrieve information about color records from the font and
compute font-palette values for each frame. This workaround solution is demonstrated below
for reference.

Defining animation behavior for the CSS font-palette property solves this by enabling a
declarative CSS way of achieving a smooth transition. This feature will provide web authors with
an easy way to have a smooth transition between font-palette values.

Defining the Transition
The font palette CSS property can be interpolated either

●​ by base-palette value (i.e. interpolate between all colors of base-palette A and
base-palette B that differ)

●​ or override-colors value (i.e. assuming the base-palette value is identical only the
overridden colors need to be interpolated) or

●​ by the combination of them both.

To compute interpolated values for specific frames, we first need to gather all color records
values for the endpoint palettes. The interpolated value for the property is computed by
interpolating each color from the palette the same way other color CSS properties are
interpolated, compare section 12 of CSS Color Level 4.

Mixing Palettes: the ‘palette-mix()’ Function
We represent mix values during the animation/transition with the following mix function value
to represent interpolated font-palette values during the animation progress:

https://css-tricks.com/colrv1-and-css-font-palette-web-typography/#:~:text=Another%20limitation%3A%20animations%20and%20transitions%20from%20one%20font%2Dpalette%20to%20another%20don%E2%80%99t%20interpolate%20%E2%80%94%20meaning%20you%20can%20switch%20instantly%20from%20one%20palette%20to%20another%2C%20but%20can%E2%80%99t%20gradually%20animate%20between%20them.%20My%20dream%20of%20a%20luridly%20animated%20emoji%20font%20is%20sadly%20unrealized
https://drafts.csswg.org/css-color-4/#interpolation

None

None

​ Page 3 of 9

palette-mix() = palette-mix(<color-interpolation-method>, [[normal | light |

dark | <palette-identifier>] && <percentage [0,100]>?]#{2})

Example

palette-mix(in oklab, --p1 (100% - progress), --p2 progress)

Interpolates each color between --p1 and --p2 palettes as it is done for other color properties.
The function is used for interpolation, to represent font-palette interpolated value at time
progress between the palettes “--p1” and “--p2”.

Combination of palettes

We propose font-palette to not be additive. That means in additive animations,
animation-composition would always have a replacement behavior, i.e the following animation:

@keyframes foo {
 from { font-palette: light; animation-composition: add; }
 to { font-palette: dark; animation-composition: accumulate; }
}

Would gave the same result as:

@keyframes foo {
 from { font-palette: light; animation-composition: replace; }
 to { font-palette: dark; animation-composition: replace; }
}

Considerations for edge cases

Constraint for the font-family

In order for interpolation to work, both, the @font-palette-values rule of the start and end of
the animation need to be applicable to the same font (defined in font-family descriptor).

According to the CSS Fonts 4 spec, we match all fonts from the font-family descriptor of
@font-palette-values rule against the current matched font. For example, in the code below,
if family-3 is the matched font for the div element then the --custom font-palette will be

https://drafts.csswg.org/css-color-4/#interpolation
https://www.w3.org/TR/css-fonts-4/#font-family-2-desc

None

None

​ Page 4 of 9

applied to this element. If family-4 was matched for the div element then the normal
font-palette would be applied to this div element, since font-family descriptor for --custom
font-palette does not contain matched font.

@font-palette-values --custom {
​ font-family: "family-1", "family-2", "family-3",
​ base-palette: 3;
}
div {

font-family: "family-4", "family-3";
​ font-palette: --custom;
}

Taking all of the above into account, if font-palettes from both of the endpoints of the
animation do not have a common font-family, then at least one of them does not contain the
matched font-family for the element. For example in the following scenario:

@font-palette-values --p1 {
​ font-family: "family-1", "family-2",
​ base-palette: 3;
}
@font-palette-values --p2 {
​ font-family: "family-3", "family-4",
​ base-palette: 3;
}
@keyframes anim {
​ from { font-palette: --p1; }
​ to { font-palette: --p2; }
}
div {

font-family: "family-2", "family-3", "family-5";
animation: anim 1s infinite;

}

If the current matched font-family for the div element is equal to:

●​ family-2, then the animation would be between --p1 and normal palettes

None

​ Page 5 of 9

●​ family-3, then the animation would be between normal and --p2 palettes
●​ family-5, then the animation would be between normal and normal palettes

In theory it is possible that the matching font would change after the animation / transition has
already started, for such cases we need to stop the animation / transition.

Constraint for the palette

Another constraint of the font-palette animation is that both, starting and ending palettes
should contain the same amount of color records. But since we use the same font in both the
start and the end of the animation / transition and since every palette in the font’s CPAL table
has the same amount of color records, this constraint will always be addressed unless the font
is broken.

Examples

Animating within one palette

@font-palette-values --paletteFrom {
font-family: "Nabla";
base-palette: 3;
override-colors: 6 #5e4fa2;

}
@font-palette-values --paletteTo {

font-family: "Nabla";
base-palette: 3;
override-colors: 6 #f79459;

}
@keyframes anim {
 from { font-palette: --paletteFrom; }
 to { font-palette: --paletteTo; }
}
div {
 animation: anim 1s infinite;
}

For the following palettes, the color for the record at the index 6 should be changing smoothly.

This is how animation within one palette looks like now, it is discrete jump between the values:

https://learn.microsoft.com/en-us/typography/opentype/spec/cpal#:~:text=is%20given%20by-,numPaletteEntries,-.%20The%20number%20of

None

​ Page 6 of 9

And this how it will looks like when the interpolation for font-palette is implemented:

Animating between palettes

@font-palette-values --paletteFrom {
font-family: "Nabla";
base-palette: 3;

}
@font-palette-values --paletteTo {

font-family: "Nabla";
base-palette: 1;

}
@keyframes anim {
 from { font-palette: --paletteFrom; }
 to { font-palette: --paletteTo; }
}
div {
 animation: anim 1s infinite;
}

JavaScript

​ Page 7 of 9

This is how animation between two palette looks like now, it is discrete jump between the
palette color records’ values:

And this how it will look like when the interpolation for font-palette is implemented:

The Nabla color font is used to illustrate examples: Nabla font at Google Fonts

Imperative workaround in JavaScript
The following example can be found online on Glitch:

●​ Live: https://animating-font-palette.glitch.me
●​ Code: https://glitch.com/edit/#!/animating-font-palette.

Currently animating the font palette is possible only by computing palette values for each
frame in js script. For that to work, developers would first have to look inside the font to retrieve
the color records for the first and the last frame of the animation then compute interpolated
values for example using the D3.js library.

Below is an example of computing interpolated values for the Animating between palettes
case:

var colors = new Array();

https://fonts.google.com/specimen/Nabla?query=nabla
https://animating-font-palette.glitch.me
https://glitch.com/edit/#!/animating-font-palette
http://d3.js

JavaScript

​ Page 8 of 9

var from_colors = ['#5A5A78', '#141432', '#464664', '#323250',
'#5A5A78','#787896', '#5A5A78', '#787896', '#9696B4','#C8C8D2'];

var to_colors = ['#FF1471', '#780082', '#BE14B4', '#9B1EAF',
'#FF1471', '#FF6B8B', '#FF1471', '#FF6B8B', '#FF9CC2',
'#FFFFFF'];

var steps = 100;

var color_records_cnt = start_colors.length;

for(let i = 0; i < color_records_cnt; i++) {

var color_interpolator = d3.interpolateHcl(from_colors[i],
to_colors[i]);

var colors_array = d3.range(0, (1 + 1 / steps), 1 / (steps -
1)).map(function(d) { return d3.rgb(color_interpolator(d)).hex();
});

colors.push(colors_array);

}

In this example, the color array stores the interpolated color records values of the palette on
each step. Start_colors and finish_colors are the color records from the Nabla font's third
and first palette respectively.

After computing interpolated values for each step, we set new values for each frame for
example by defining them in the override-colors descriptor:

function setFontPalette(color) {

const styleId = 'font-palette-sheet';

var fontStyleSheet = document.getElementById(styleId);

var newFontStyleSheet = document.createElement("style");

https://fonts.google.com/specimen/Nabla?query=nabla

​ Page 9 of 9

newFontStyleSheet.id = styleId;

var overrides = [...Array(color.length).keys()].map(i => (i
!= 0) ? (i + ` ` + color[i]) : (i + ` ` + color[i])).join();

newFontStyleSheet.textContent = `@font-palette-values
--myPalette {

font-family: "Nabla";

base-palette: 3;

override-colors:`

+ overrides + `; }`;

document.head.appendChild(newFontStyleSheet);

if (fontStyleSheet) {

fontStyleSheet.parent.removeChild(fontStyleSheet);

}

}

	Explainer: Animating Font-Palette
	Summary
	Motivation
	Defining the Transition
	Mixing Palettes: the ‘palette-mix()’ Function
	Example
	Combination of palettes

	Considerations for edge cases
	Constraint for the font-family
	Constraint for the palette

	Examples
	Animating within one palette
	Animating between palettes

	Imperative workaround in JavaScript

