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Important notice: 
1.​ Backup your code regularly. Note: we will NOT waive late submission penalty for your 

accidental file loss, even if the loss is due to ECN 
2.​ Make sure your ECN account works. Inform the instructor/TA any issue early on. Any 

ECN issue reported to the instructor/TA within 48 hours before the deadline will not 
be considered for accommodation. 

3.​ Debugging: the instructor/TA will provide abundant, specific suggestions for 
debugging. However, to ensure fairness among all students, the instructor/TA cannot 
debug code for individual students. 
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Introduction 
In this project, you will utilize your knowledge about queues and trees to design our own simple 
version of a file compression and decompression utility (similar to zip and unzip). You will 
base your utilities on the widely used algorithmic technique of Huffman coding. In case you did 
not know it, Huffman coding is used in JPEG compression as well as in MP3 audio compression. 
Let us see how the procedure of coding works. 
 
ASCII coding 
 
Many programming languages use ASCII (which stands for American Standard Code for 
Information Interchange) coding to represent characters. In ASCII coding, every character is 
encoded (represented) with the same number of bits (8-bits) per character. Since there are 256 
different values that can be represented with 8-bits, there are potentially 256 different characters 
in the ASCII character set. For your reference, the ASCII character table is available at 
http://www.asciitable.com/.  
 
Note that you must assume that all possible ASCII values may appear in the input text file.  
 
Let us now look at a simple example of ASCII encoding of characters. We'll look at how the 
string "go go gophers" is encoded in ASCII. Using ASCII encoding (8 bits per character) 
the 13-character string "go go gophers" requires 13 * 8 = 104 bits. The table below shows 
how the coding works. 
 

Character ASCII code  8-bit binary value 
g 103 1100111 
o 111 1101111 
p 112 1110000 
h 104 1101000 
e 101 1100101 
r 114 1110010 
s 115 1110011 

Space 32 1000000 
 
The given string could be written (coded numerically) as 103 111 32 103 111 32 103 
111 112 104 101 114 115. Although not easily readable by humans, this would be 
written as the following stream of bits (the spaces would not be written, just the 0's and 1's) 
  
1100111 1101111 1100000 1100111 1101111 1000000 1100111 1101111 1110000 1101000 1100101 1110010 
1110011  

http://www.asciitable.com/


 

 
From ASCII coding towards Huffman coding 
 
Next, let us see how we might save bits using a simpler coding scheme. Since there are only 8 
different characters in "go go gophers", it is possible to use only 3-bits to encode the 8 
different characters. We might, for example, use the coding shown in the table below (keep in 
mind that other 3-bit encodings are also possible).  
 

Character Code Value  3-bit binary value 
g 0 000 
o 1 001 
p 2 010 
h 3 011 
e 4 100 
r 5 101 
s 6 110 

Space 7 111 
 
Now the string "go go gophers" would be encoded as 0 1 7 0 1 7 0 1 2 3 4 5 6 
or, as bits: 000 001 111 000 001 111 000 001 010 011 100 101 110 111. As you can see, 
by using three bits per character instead of eight bits per character that ASCII uses, the string 
"go go gophers" uses a total of 39 bits instead of 104 bits. 
 
However, even in this improved coding scheme, we used the same number of bits to represent 
each character, irrespective of how often the character appears in our string. Even more bits can 
be saved if we use fewer than three bits to encode characters like g, o, and space that occur 
frequently and more than three bits to encode characters like e, p, h, r, and s that occur 
less frequently in "go go gophers". This is the basic idea behind Huffman coding: to use 
fewer bits for more frequently occurring characters. We'll see how this is done using a tree data 
structure that stores the characters as its leaf nodes, and whose root-to-leaf paths provide the bit 
sequence used to encode the characters.  
 
Towards a Coding Tree 
 
Using a binary tree for coding, all characters are stored at the leaves of a tree. In the diagram 
below, the tree (which happens to be a complete binary tree) has eight levels meaning that the 
root-to-leaf path always has seven edges. A left-edge (black in the diagram) is numbered 0 and a 
right-edge (blue in the diagram) is numbered 1. The ASCII code for any character/leaf is 
obtained by following the root-to-leaf path and concatenating the 0's and 1's. For example, 
the character 'a', which has ASCII value 97 (1100001 in binary), is shown with root-to-leaf 
path of right-right-left-left-left-left-right. 
 



 

 
Clearly, the specific structure of the tree determines the coding of any leaf node using the 0/1 
edge convention described. If we use a different tree, we get a different coding. As an example, 
the tree below on the right yields the coding shown on the left.  
 

 
Character Binary code 
'g' 10  
'o' 11  
'p' 0100  
'h' 0101  
'e' 0110  
'r' 0111  
's' 000  
'  ' 001  
 

 
Using this coding, "go go gophers" is encoded (spaces wouldn't appear in the bit-stream) as: 
10 11 001 10 11 001 10 11 0100 0101 0110 0111 000. This is a total of 37 
bits, which saves two bits over the improved encoding in which each of the 8 characters has a 
3-bit encoding! The bits are saved by coding frequently occurring characters like 'g' and 'o' with 
fewer bits (here two bits) than characters that occur less frequently like 'p', 'h', 'e', and 'r'.  
 
The same character encoding induced by the tree can be used to decode a stream of bits. For 
example, you can try to decode the following bit-stream using the above tree; the answer with an 
explanation follows:  
 
0101011001110010000100010101100111011000110110110000001010101100
1110110  
 



 

To decode the stream, start at the root of the tree, and follow a left-branch if the next bit in the 
stream is a 0, and a right branch if the next bit in the stream is a 1. When you reach a leaf, write 
the character stored at the leaf, and start again at the top of the tree. To start, the bits are 
010101100111. This yields left-right-left-right to the letter 'h', followed (starting again at the 
root) with left-right-right-left to the letter 'e', followed by left-right-right-right to the letter 'r'. 
Continuing thus yields a decoded string “her sphere goes here”. 
 
Prefix codes 
 
When all characters are stored in leaves, and every interior (non-leaf) node has two children, the 
coding induced by the 0/1 convention outlined above satisfies a very important property called 
the prefix property which states that no bit-sequence encoding of a character is the prefix of the 
bit-sequence encoding of any other character. This makes it possible to decode a bitstream using 
the coding tree by following root-to-leaf paths. The tree shown above for "go go gophers" 
satisfies this prefix property and is an optimal tree. That means there are no other trees with the 
same characters that result in fewer total bits to encode the string "go go gophers". There 
are other trees that use 37 bits; for example you can simply swap any sibling nodes and get a 
different encoding that uses the same number of bits. Next, we look at an algorithm for 
constructing such an optimal tree. This algorithm is called Huffman coding, and was invented by 
David A. Huffman in 1952 when he was a Ph.D. student at MIT. 
 
Huffman Coding  
 
In the previous section we saw examples of how a stream of bits can be generated from an 
encoding. We also saw how the tree can be used to decode a stream of bits. We'll discuss how to 
construct the tree here using Huffman's algorithm. 
 
We'll assume that each character has a weight associated with it that is equal to the number of 
times the character occurs in a file. For example, in the string "go go gophers, the 
characters 'g' and 'o' have weight 3, the space has weight 2, and the other characters have weight 
1. When compressing a file we'll need to first read the file and calculate these weights. Assume 
that all the character weights have been calculated. Huffman's algorithm assumes that we're 
building a single tree from a group (or forest) of trees. Initially, all the trees have a single node 
containing a character and the character's weight. Trees are combined by picking two trees and 
making a new tree from the two trees. This decreases the number of trees by one at each step 
since two trees are combined into one tree. The algorithm is as follows: 
 

1.​ Begin with a forest of trees. All trees have just one node, with the weight of the tree equal 
to the weight of the character in the node. Characters that occur most frequently have the 
highest weights. Characters that occur least frequently have the smallest weights.  

2.​ Repeat this step until there is only one tree: 
Choose two trees with the smallest weights; call these trees T1 and T2. Create a new tree 
whose root has a weight equal to the sum of the weights T1 + T2 and whose left sub-tree 
is T1 and whose right sub-tree is T2.  

3.​ The single tree left after the previous step is an optimal encoding tree.  



 

We'll use the string "go go gophers" as an example. Initially we have the forest shown 
below. The nodes are shown with a weight that represents the number of times the node's 
character occurs in the given input string/file. 
 

 
 
We pick two minimal nodes. There are five nodes with the minimal weight of one, it doesn't 
matter which two we pick. In a program, the deterministic aspects of the program will dictate 
which two are chosen, e.g., the first two in an array, or the elements returned by a priority queue 
implementation. We create a new tree whose root is weighted by the sum of the weights chosen. 
We now have a forest of seven trees as shown here: 
  

 
 
Choosing two minimal trees yields another tree with weight two as shown below. There are now 
six trees in the forest of trees that will eventually build an encoding tree. 

  
 
Again we must choose the two trees of minimal weight. The lowest weight is the 'e'-node/tree 
with weight equal to one. There are three trees with weight two, we can choose any of these to 
create a new tree whose weight will be three. 

  
 
 
Now there are two trees with weight equal to two. These are joined into a new tree whose weight 
is four. There are four trees left, one whose weight is four and three with a weight of three.  



 

 
Two minimal (three weight) trees are joined into a tree whose weight is six. In the diagram below 
we choose the 'g' and 'o' trees (we could have just as well chosen the 'g' tree and the space-'e' tree 
or the 'o' tree and the space-'e' tree.) There are three trees left. 

  
The minimal trees have weights of three and four; these are joined into a tree with weight seven. 

  
Finally, the last two trees are joined into a final tree whose weight is thirteen, the sum of the two 
weights six and seven. Note that this tree is different from the tree we used to illustrate Huffman 
coding above, and the bit patterns for each character are different, but the total number of bits 
used to encode "go go gophers" is the same.  



 

 
 
The character encoding induced by the above tree is shown below where again, 0 is used for left 
edges and 1 for right edges.  

Character Binary value 
'g' 00  
'o' 01  
'p' 1110  
'h' 1101  
'e' 101  
'r' 1111  
's' 1100  
'  ' 100  

 
The string "go go gophers" would be encoded as (with spaces used for easier reading, the 
spaces wouldn't appear in the real encoding): 00 01 100 00 01 100 00 01 1110 
1101 101 1111 1100. Once again, 37 bits are used to encode "go go gophers". There 
are several trees that yield an optimal 37-bit encoding of "go go gophers". The tree that 
actually results from a programmed implementation of Huffman's algorithm will be the same 
each time the program is run for the same weights (assuming no randomness is used in creating 
the tree).  
 

Implementation 
 
In this section we'll see the basic programming steps in implementing Huffman coding. There are 
two parts to an implementation: a compression program and a decompression program. You need 
both to have a useful compression utility. We'll assume these are separate programs, but they 
actually have many common functions. We'll call the program that reads a regular file and 



 

produces a compressed file the compression or huffing program. The program that does the 
reverse, producing a regular file from a compressed file, will be called the decompression or 
unhuffing program. 
 
The Compression or Huffing Program 
 
To compress a file (sequence of characters) you need a table of bit encodings, i.e., a table giving 
a sequence of bits used to encode each character. This table is constructed from a coding tree 
using root-to-leaf paths to generate the bit sequence that encodes each character.  
 
Assuming you can write a specific number of bits at a time to a file, a compressed file is made 
using the following top-level steps. These steps will be developed further into sub-steps, and 
you'll eventually implement a program based on these ideas and sub-steps.  

1.​ Build a table of per-character encodings. The table may be given to you, e.g., an ASCII 
table, or you may build the table from a Huffman coding tree. 

2.​ Read the file to be compressed (the plain file) and process one character at a time. To 
process each character find the bit sequence that encodes the character using the table 
built in the previous step and write this bit sequence to the compressed file.  

As an example, we'll use the table below on the left, which is generated from the tree on the 
right. For now, ignore the weights on the nodes; we'll use those when we discuss how the tree is 
created. 
  

Another Huffman Tree/Table Example  
 
Character Binary value 
'a' 100  
'r' 101  
'e' 11  
'n' 0001  
't' 011  
's' 010  
'o' 0000  
'  ' 001  
 

 

 
To compress the string/file "streets are stone stars are not", we read one 
character at a time and write the sequence of bits (i.e. not 0/1 characters otherwise you will 
save no space) that encodes each character. To encode "streets are" we would write the 
following bits: 010011101111101101000110010111. The bits would be written in the 
order 010, 011, 101, 11, 11, 011, 010, 001, 100, 101, 11. That's the compression program. Two 
things are missing from the compressed file: (1) some information (called the header) must be 
written at the beginning of the compressed file that will allow it to be decompressed; (2) some 
information must be written at the end of the file that will be used by the decompression program 



 

to tell when the compressed bit sequence is over (this is the bit sequence for the pseudo-eof 
character described later). 
  
Building the Table for Compression/Huffing 
 
To build a table of optimal per-character bit sequences you'll need to build a Huffman coding tree 
using the Huffman algorithm described earlier. The table is generated by following every 
root-to-leaf path of the Huffman tree and recording the 0/1 edges followed. These paths represent 
the optimal encoding bit sequences for each character.  
 
There are three steps in creating the table:  

1.​ Count the number of times every character occurs. Use these counts to create an initial 
forest of one-node trees. Each node has a character and a weight equal to the number of 
times the character occurs.  

2.​ Use the greedy Huffman algorithm to build a single tree. The final tree will be used in the 
next step. 

3.​ Follow every root-to-leaf path of the tree creating a table of bit sequence encodings for 
every character/leaf. 

 
Header Information 
 
You must store some initial information in the compressed file that will be used by the 
decompression/unhuffing program. Basically, you must store the tree that is used to compress the 
original file. This is because the decompression program needs this exact same tree in order to 
decode the data. There are several alternatives for storing the tree. Two of these are outlined 
here: 
  

●​ Store the character counts at the beginning of the file. You can store counts for every 
character, or counts for only the non-zero characters. If you do the latter, you must 
include some method for indicating the character, e.g., store character/count pairs. 
  

●​ You can store the tree at the beginning of the file. One method for doing this is to do a 
pre-order traversal, writing each node visited. You must differentiate leaf nodes from 
internal/non-leaf nodes. One way to do this is to write a single bit for each node, say 1 for 
leaf and 0 for non-leaf. For leaf nodes, you will also need to write the character stored. 
For non-leaf nodes there's no information that needs to be written, just the bit that 
indicates there's an internal node. 

  
The pseudo-EOF character 
 
Operating systems typically require that disk files have sizes that are multiples of some 
architecture/operating system specific unit, e.g., a byte or word. On many systems all file sizes 
are multiples of 8 or 16 bits so that it isn't possible to have a 122-bit file. So, if all file output is 
done in eight-bit chunks and your program writes exactly 61 bits explicitly, then 3 extra bits will 
be written so that the number of bits written is a multiple of eight. Your decompressing/unhuff 



 

program must have some mechanism to account for these extra or "padding" bits since these bits 
do not represent compressed information. Your decompression/unhuff program cannot simply 
read bits until there are no more left since your program might then read the extra padding bits 
written due to buffering. This means that when reading a compressed file, you CANNOT use 
code like this (this assumes that the function readbits(x) reads x bits from the file). 
 
        int bits; 
        while ((bits = readbits(1)) != -1) 
        { 
            // process bits 
        } 
 
To avoid this problem, you can use a pseudo-EOF character and write a loop that stops when the 
pseudo-EOF character is read in (in compressed form). The code below illustrates how reading a 
compressed file works using a pseudo-EOF character:  
 
       int bits; 
       while (true) 
       { 
           if ((bits = readbits(1)) == -1) 
           { 
               printf("Should not happen! trouble reading bits"); 
           } 
           else 
           {  
              // use the zero/one value of the bit read 
              // to traverse Huffman coding tree 
              // if a leaf is reached, decode the character and print UNLESS 
              // the character is pseudo-EOF, then decompression done 
 
               if ( (bits & 1) == 0) // read a 0, go left  in tree 
               else                  // read a 1, go right in tree 
 
               if (at leaf-node in tree) 
               { 
                   if (leaf-node stores pseudo-eof char)  
                       break;   // out of loop 
                   else 
                       write character stored in leaf-node 
               } 
           } 
       } 
 
When a compressed file is written the last bits written should be the bits that correspond to the 
pseudo-EOF character. You will have to write these bits explicitly. These bits will be recognized 
by the unhuff program and used in the decompression. This means that your decompression 
program will never actually run out of bits if it's processing a properly compressed file (you may 
need to think about this to really believe it).  
In other words, when decompressing you will read bits, traverse a tree, and eventually find a 
leaf-node representing some character. When the pseudo-EOF leaf is found, the program can 



 

terminate because all decompression is done. If reading a bit fails because there are no more bits 
(the bit reading function returns false) the compressed file is not well formed.  
It is obvious from the above that every time a file is compressed the count of the number of times 
the pseudo-EOF character occurs should be one --- this should be done explicitly in the code that 
determines frequency counts.  
In other words, a pseudo-char EOF with number of occurrences (count) of 1 must be explicitly 
created and used in creating the tree used for compression. 
 

In other words, you do not need to identify an ASCII value for EOF; EOF does not need to 
have a corresponding ASCII value. It only needs to have the corresponding bit sequence.  

 

Requirements 
 
Your task is to write two programs, one titled “huff.c” and the other titled “unhuff.c”.   
 
The program huff.c should accept one command line argument, which will be the name of an 
input file.  
 

In other words, the program should not be interactive: it should not require user to key in 
inputs while the program is running. 

 
The program should compress the input file using Huffman coding and write out the compressed 
output to a file that has the same name as the input file with a “.huff” appended to it. For 
example, if “example.txt” is the name of an input file, the output file should be 
“example.txt.huff”.  
 
The program unhuff.c should accept one command line argument, which will be the name of an 
input file. The program should de-compress the input file and write out the de-compressed output 
to a file that has the same name as the input file with an “.unhuff” appended to it. For example, if 
“example.txt.huff” is the name of an input file, the output file should be 
“example.txt.huff.unhuff”. 
 
WHAT CAN YOU ASSUME? 
 
You can assume that the input file to huff.c will be a pure ASCII text file. Note that this 
assumption is not strictly required, but is only to make your job of writing the program a little 
easier. 
 
MILESTONE1: WHAT YOU NEED TO SUBMIT? 
Write a few paragraphs (around 600 words in total) in a .pdf file to explain your overall approach 
to the problem.  



 

We try to minimize your burden of ms1. However, at this moment, your huff/unhuff should be 
functional, at least on some small inputs. Otherwise, you will have no time for 
efficiency/performance tuning. 

 
turnin -c ece368 -p proj2ms1 ms1.pdf 
 
FINAL: WHAT YOU NEED TO SUBMIT? 

 
●​ All your source code (all the “.c” and “.h” files). Code should be reasonably commented 

and easy to understand. 
●​ A 2-page report in PDF format that describes your solution and results. If you need any 

special flags included for compilation, mention that in your report.  
 

FINAL: HOW TO SUBMIT? 
 

1.​ Create a directory named “ece368-project2”. Store all your source code and project report 
in this directory. 

2.​ Make sure you remove any executables, core dump files, and input files. At the time of 
submission, the directory should only contain “.c”, “.h”, and “report.pdf” files. 
Submissions containing large input files are subject to grade penalty. 

3.​ On shay, cd to the parent of this “ece368-project2” directory. 
4.​ Type: turnin -c ece368 -p proj2 ece368-project2/ 
5.​ You can check if your files have been submitted by typing turnin -v -c ece368 

-p proj2 ece368-project2/ 
 
FINAL: HOW WILL WE GRADE YOUR SUBMISSION? 
 
We will test your huff.c and unhuff.c by compiling them with the following command: 
 
gcc -Werror -Wall -O3 huff.c -o huff 
gcc -Werror -Wall -O3 unhuff.c -o unhuff 
 
(If you need to use additional libraries and hence compiler flags, mention that in your report, and 
we will compile your code with the specified compiler directives added to the compilation 
instruction above.) 
 
We will then run your compression program on several input files of varying sizes, and then 
decompress these compressed files.  
 
 
Correctness (60 points): whether the final decompressed file is exactly the same as the original 
file. 
 



 

Details: 
●​ Program doesn't crash (No segmentation faults, etc) (10 points) 
●​ Does the program compress original and decompress correctly? Note that your 

compressed file must NOT equal the input file (this is to prevent trivial pass through) (10 
test cases, 5 points each) 

○​ For small test cases (<1KB), you will get the correctness points even if your 
compressed file is larger than the input. 

○​ For medium/large test cases (>=1KB), you will get the correctness points if the 
compressed file <=95% of the input file. We will make sure the input file can be 
compressed, of course. 

 

Note: You get the 60 pts only when your huff/unhuff works together. The TA cannot determine 
that your huff works, e.g., by manually inspecting your compressed file. 

 
Performance and efficiency (20 points normalized across submissions): We will also 
compute two performance metrics for your code: (a) the compression ratio (this is just the size of 
your original file divided by the size of the compressed file), and (b) the time taken for your 
huff.c and unhuff.c to execute. 20 points of your grade for this project will depend on how well 
you do in terms of the two metrics. This part of the grading will be normalized. 
 
Details: 

●​ Rank compared to others (0 for the worst, 1 for the best, steps of 1/N for each rank, N 
total students) 

●​ Compression ratio (10 points): Ranked against the class. Your rank % * 10;  
●​ Speed (10 points): Ranked against the class. Your rank % * 10;  

 
 
Report (20 points): clarity and quality of your report. 
 
-EOF- 
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