

Towards Data Visualization

d) Height:

e) Zip Code:

f) Number of Illini wins in football against Purdue:

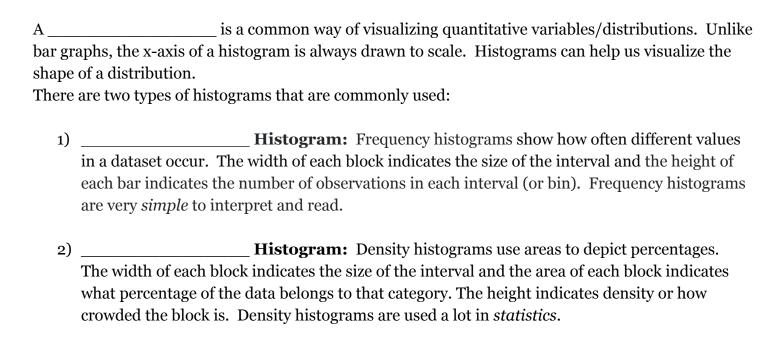
As we've seen previously, data frames and tables are a powerful way of organizing and displaying summary data. However, large tables of numbers can be difficult to interpret, no matter how organized they are. Sometimes it is much easier to interpret graphs than numbers.

Before we start looking at different ways to visualize data, let's talk about the two main types of data that we will analyze in this class:

that are ava	·	erence between <i>quantitative</i> and <i>qualitative</i> data	
data scientis		measured numerically. Many of the variables that al. Their values are numbers on which you can	ıt
perform arit	hmetic. Quantitative data can be fur	ther divided into two types:	
	Variables:	Variables:	
Qualitativo categories.	e (categorical) data are not numeri	cally measured. Instead, the data fall into descrip	itive
List a few qı	nalitative variables:		
Examples:	nalitative variables: What type of variables are the Occupation:	ofollowing?	
Examples: a)	What type of variables are the		

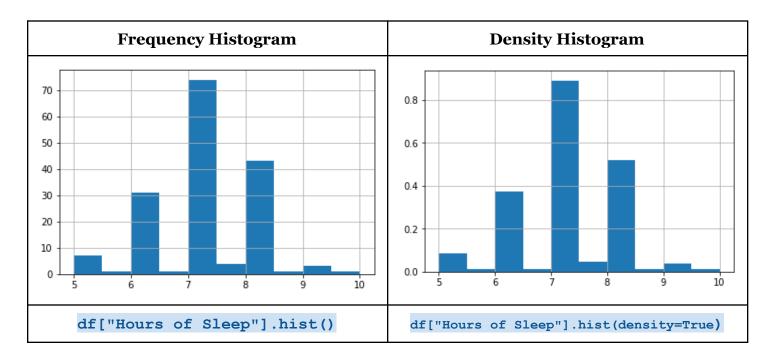
*Quantitative data can be displayed using a *histogram* because the data range can be divided into numeric intervals; areas make sense.

*Qualitative data must be displayed using more generic *bar graphs*, because the data cannot be divided into numeric intervals, and areas have no real meaning.


Bar Graphs vs. Histograms

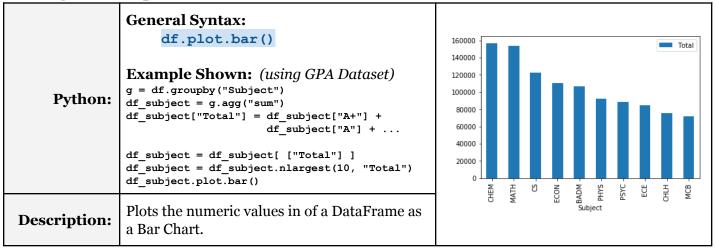
A ______ is a familiar way of visualizing qualitative (categorical) variables/distributions. It displays a bar for each category. The bars are equally spaced and equally wide. You can create bar graphs with horizontal bars or vertical bars.

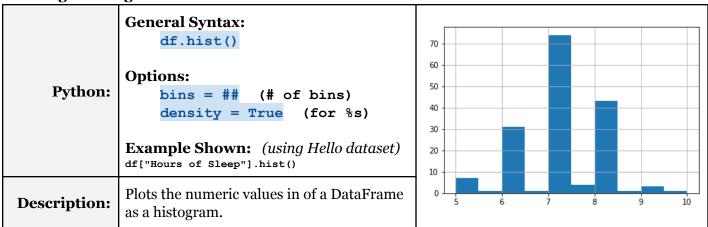
Bars use height to depict frequencies or counts. The widths of the blocks in bar graphs don't mean anything. They're all the same regardless of the size of the category.


Example 1: Draw a bar graph using the following data from the GPA dataset. First, find the number of sections in each category, then label your x and y-axis, and lastly, draw the bar graph.

Category:	STAT	CS	IS	MATH	CHEM	PHYS
# of Sections:						

IMPORTANT NOTE: In a density histogram, the total area of all the blocks is 1 or 100%.


Example 2: Here are histograms representing the hours of sleep from the "Hello" dataset:


- **a)** Is the number of students who got 5-6 hours of sleep greater than, less than, or equal to the number who got 8-10 hours of sleep?
- **b)** How many students get 8 or more hours of sleep?
- c) Suppose we all get 1 extra hour of sleep after exam week is over. How would the histogram change?

Bar Graphs and Histograms in Python!

Creating a Bar Graph

Creating a Histogram

Data Science Discovery – Things To Be Doing:

- 1. **New EC Survey:** "Perception of Probability Words", +1 if completed by <u>Sunday</u> at 11:59pm
- 2. Homework #3 is due Sunday, Sept. 22; Homework #4 out this weekend
- 3. **lab_gpa** due <u>Monday</u> (Sept. 23) by 11:59pm
- 4. Midterm Exam 1: Monday, Sept. 30 Wednesday, Oct. 2
 - a. Sign up for your slot to take the exam on https://cbtf.engr.illinois.edu/sched/
 - b. More details next week, including practice exams!
- 5. **Open Office Hours:** Every M/W/R/F from 4:00pm 6:30pm in 23 Illini Hall
- 6. Extra Credit +1 Notebook every lecture: out after lecture, due 11:30am before next lecture