<u>Objectif:</u> Mise en œuvre des outils d'analyse pour préparer la mise en service d'une installation frigorifique (mesure de grandeurs électriques).

1/ Source d'alimentation

1.1/ Les grandeurs caractéristiques en électricité

Compléter le tableau avec le nom des grandeurs, la lettre qui les désigne et leur unité

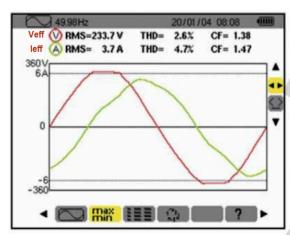
Grandeur	Lettre	Unité (lettres)	Détail de l'unité
Tension	U	V	(Volt)
(Intensité du) Courant	I	Α	(Ampère)
Puissance active	Р	W	(watt)
Energie	E	Wh	(Watt heure)
Temps	t	s	(Seconde)
Résistance	R	Ω	(Ohm)
Puissance apparente	S	VA	(Volt Ampère)
Puissance réactive	Q	Var	(Volt ampère réactif)
Fréquence	f	Hz	Hertz
Facteur de puissance	Cos(φ)		(0 à 1)
Rendement	η	%	0 à 100% (ou 0 à 1

1.2/ Relation entre les grandeurs

Cocher la bonne case

Formule	Vrai	Faux
I = U / R	Vrai	
R = U * I		Faux
E = P * t	Vrai	
P = E / t	Vrai	
P1 = U * I * sin(φ)		Faux
I1 = P1 / (U * Cos(φ))	Vrai	
P3 = $\sqrt{3}$ * U * I * Cos(φ))	Vrai	

Greta Besançon - JLTIMIN 03/11/22 1/3

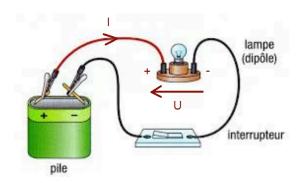

2/ Dispositifs de protection

Donner la fonction des dispositifs de protection suivant:

Disjoncteur (magnéto-thermique) 20A courbe D	Protection du matériel contre les surintensités (surcharges et court-circuits)
Interrupteur différentiel 40A - 30mA	Mise EN/HORS énergie + protection des personnes contre les contacts direct et indirects (fuite de courant)
Fusible 10A de type aM	Protection du matériel contre les surintensités (surcharges et court-circuits)

3/ Schéma de câblage d'un contacteur (pré-actionneur)

Des mesures sont effectuées sur un équipement monophasé. Pour cela l'analyseur de réseau est muni d'une pince (mesure de I) et de 2 pointes de touche (mesure de V).


- 1. À partir des relevés effectués, donner :
- a. La valeur efficace de la tension V : 233,7 V et la valeur efficace du courant I : 3,7 A
- b. La valeur de la puissance active P : 0,35kW et la valeur de la puissance réactive Q : 0,78 kVar
- c. Le facteur de puissance PF: 0,406 et la valeur de la puissance apparente S: 0,86 kVA

4/ Circuit électrique de base

Dans le montage ci-dessus, une pile de type 6LR (tension U=9v), alimente une lampe via un interrupteur.

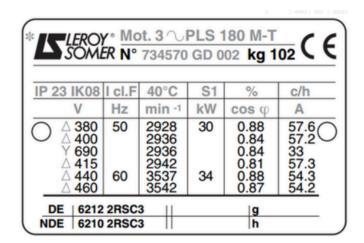
Représenter <u>le courant l dans le circui</u>t ainsi que <u>la tension</u> <u>au niveau de la lampe</u>.

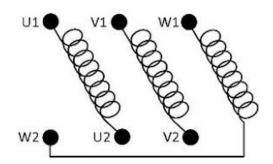
Si la résistance de la lampe est de (R=) 350 ohms, calculer:

- Le courant consommé par la lampe

$$I = U / R = 9 / 350 = 0,026 A = 26 mA$$

- Sa puissance

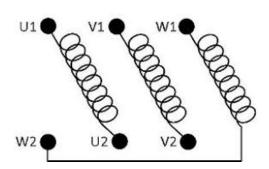

- L'énergie consommée durant une journée où elle fonctionne durant 9 heures.


$$E = P * t = 0.231 * 9 = 2 Wh$$

5/ Couplage d'un moteur (machine asynchrone) triphasé

En analysant les plaques à bornes des deux moteurs ci-dessous, donner le nom du couplage à prévoir pour un raccordement sur le réseau 240v/400v et représentez le sur schéma de principe proposé.

Moteur 1:



Couplage => Triangle

Moteur 2:

Couplage => Etoile