
Fury - pyBullet Integration Guide
Simple Rigid body dynamics

● Necessary Imports
● Connection Mode
● Disconnection
● Setting Gravity
● Creating Objects
● Changing Object Dynamics
● Adding objects to the scene
● Application of Force/Torque
● Enabling Collision
● Creation of Show Manager
● Syncing properties of Actors
● Creation of timer callback
● Initiating the simulation
● Rendering multiple objects by a single actor
● Rendering Joints

Examples
● Brick Wall Simulation
● Ball Collision Simulation
● Brick Wall Simulation(Single Actor)
● Chain Simulation
● Wrecking Ball Simulation
● Domino Simulation

Official docs:
● FURY
● pyBullet

NOTE: All elements are in SI units.

https://fury.gl/latest/reference/index.html
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#

Simple Rigid Body Dynamics

Necessary Imports
The following imports are necessary for physics simulations:

Imports Usage

Numpy Creation of arrays and conversion of
radians to degrees.

Fury Window and Actor API is used to visualize
the simulation.

pyBullet Physics simulation.

Itertools The Counter iterator for keeping track of
simulation steps.

import numpy as np

from fury import window, actor

import itertools

import pybullet as p

Connection Mode
“After importing the PyBullet module, the first thing to do is 'connecting' to the physics
simulation. PyBullet is designed around a client-server driven API, with a client sending
commands and a physics server returning the status. PyBullet has some built-in physics
servers: DIRECT and GUI.”

In our case we use DIRECT connection as the visualization will be handled by Fury.

client = p.connect(p.DIRECT)

Note: keeping track of physics client ID is optional unless multiple physics clients are used.
In order to observe the same simulation in pybullet, replace p.DIRECT with p.GUI.

Disconnection
PyBullet Physics client can be shutdown by the following command:

p.disconnect()

Setting Gravity
Global Scene gravity can be set using the following command:

Gravity vector.

gravity_x = 0

gravity_y = 0

gravity_z = -10

p.setGravity(gravity_x, gravity_y, gravity_z)

Creating Objects
The following criterion must be fulfilled in order to create an object which is in sync with both
Fury and pyBullet:

Object Actor The actor which will be rendered by Fury

Collision Shape The shape used by pybullet for collision
simulations. Optional if collision simulation
is not required.

Multi-Body The object that will be tracked by pybullet
for general simulations.

The following is a snippet for creating a spherical ball of radius = 0.3

Creating BALL

Ball actor

ball_actor = actor.sphere(centers = np.array([[0, 0, 0]]),

colors=np.array([1,0,0]),

radii=0.3)

Collision shape for the ball.

ball_coll = p.createCollisionShape(p.GEOM_SPHERE,

radius=0.3)

Creating a Multibody which will be tracked by pybullet.

ball = p.createMultiBody(baseMass=3,

baseCollisionShapeIndex=ball_coll,

basePosition=[2, 0, 1.5],

baseOrientation=[0, 0, 0, 1])

Note: Centers for the actor must be set to (0, 0, 0) or else the simulation will be offset by that
particular value.

Changing Object Dynamics
Object dynamics such as mass, lateral_friction, damping, inertial_pos, inertial_orn,
restitution, rolling friction etc can be changed. The following snippet shows how to change
the lateral_friction and coeff of restitution of the same ball:

p.changeDynamics(ball, -1, lateralFriction=0.3, restitution=0.5)

Note: The second parameter is linkIndex which is for bodies having multiple links or joints.
Passing -1 means applying changes to the base object.

Adding objects to the scene
Objects can be added simply by adding their respective actors to the scene.

scene = window.Scene()

scene.add(ball_actor)

Application of Force/Torque
External force or torque to a body can be applied using applyExternalForce and
applyExternalTorque. For e.g

p.applyExternalForce(ball, -1,

forceObj=[-2000, 0, 0],

posObj=ball_pos,

flags=p.WORLD_FRAME)

Here, the first argument refers to the object, the second one refers to the link, forceObj =
force vector, posObj = Position Vector of the application of force[Not applicable for
applyExternalTorque].

p.applyExternalTorque(ball, -1,

forceObj=[-2000, 0, 0],

flags=p.WORLD_FRAME)

Enabling collision
By default, collision detection is enabled between different dynamic moving bodies. The
following snippet can be used to enable/disable collision explicitly between a pair of objects.

enableCol = 1

p.setCollisionFilterPair(ball, brick, -1, -1, enableCol)

Here, we enable the collision between a ball and a brick object.

Creation of Show Manager
A window.ShowManager and itertools.count instance must be created before defining the
timer callback function and setting it to initialize.

Create a show manager.

showm = window.ShowManager(scene,

size=(900, 768), reset_camera=False,

order_transparent=True)

showm.initialize()

Counter iterator for tracking simulation steps.

counter = itertools.count()

Syncing properties of actors
The position and orientation of the actors in FURY can be updated by the values generated
in pybullet during simulation. The following snippet updates all required parameters.

Get the position and orientation of the ball.

ball_pos, ball_orn = p.getBasePositionAndOrientation(ball)

Set position and orientation of the ball.

ball_actor.SetPosition(*ball_pos)

orn_deg = np.degrees(p.getEulerFromQuaternion(ball_orn))

ball_actor.SetOrientation(*orn_deg)

ball and ball_actor can be replaced by the appropriate object and actor.

Creation of Timer Callback
To simulate physics we need to call p.stepSimulation() in order to simulate a single step of
physics simulation. Therefore, in order to update actors and simulate steps at each interval,
we need to create a timer callback. At this point one can perform any operation that they feel
like during each step of the simulation. This is also the appropriate section for the user to
define all syncing activities required by the actors and render the scene accordingly. The
following can be an example snippet:

Counter iterator for tracking simulation steps.

counter = itertools.count()

Variable for tracking applied force.

apply_force = True

Create a timer callback which will execute at each step of simulation.

def timer_callback(_obj, _event):

global apply_force

cnt = next(counter)

showm.render()

Get the position and orientation of the ball.

ball_pos, ball_orn = p.getBasePositionAndOrientation(ball)

Apply force for 5 times for the first step of simulation.

if apply_force:

Apply the force.

p.applyExternalForce(ball, -1,

forceObj=[-2000, 0, 0],

posObj=ball_pos,

flags=p.WORLD_FRAME)

apply_force = False

Set position and orientation of the ball.

ball_actor.SetPosition(*ball_pos)

orn_deg = np.degrees(p.getEulerFromQuaternion(ball_orn))

ball_actor.SetOrientation(*orn_deg)

ball_actor.RotateWXYZ(*ball_orn)

Simulate a step.

p.stepSimulation()

Exit after 2000 steps of simulation.

if cnt == 2000:

showm.exit()

Add the timer callback to showmanager.

Increasing the duration value will slow down the simulation.

showm.add_timer_callback(True, 10, timer_callback)

Initiating the simulation
Once everything is set up, one can execute showm.start() to start the simulation.

Rendering multiple objects by a single actor
Rendering multiple similar objects by a single actor is possible by manually updating the
vertices of the individual objects. The said procedure will be demonstrated with the help of
the brick wall simulation example where each brick is rendered by a single actor.
Firstly, we need to define the following parameters:

Variable Shape Description

nb_objects 1, 1 Number of objects to be
rendered.

object_centers nb_objects, 3 To keep track of the centers
in the xyz coordinate

system.
[x, y, z]

object_directions nb_objects, 3 Array to track directions.

object_orientations nb_objects, 4 Array to track orientations in
quaternions.
[x, y, z, w]

object_colors nb_bricks, 3 Array to track colors.

object_collision 1, 1 Collision shape of the
objects.

NOTE: object_directions & object_orientations must be updated together or else
orientation of objects in both the worlds may not be in sync.

Once we are ready with the above variables and array, we can proceed further to render the
objects both in the fury and pybullet world:

Rendering objects in Fury:
To render objects in the fury world we simply call the respective actors. For this example we
call actor.box for rendering the bricks:

brick_actor_single = actor.box(centers=brick_centers,

directions=brick_directions,

scales=brick_sizes,

colors=brick_colors)

scene.add(brick_actor_single)

Render Pybullet Objects:
Now to render pybullet objects we simply create a list of multibodies:

bricks[i] = p.createMultiBody(baseMass=0.5,

baseCollisionShapeIndex=brick_coll,

basePosition=center_pos,

baseOrientation=brick_orn)

Syncing objects:
Now in order to calculate and the vertices we execute the following snippet:

vertices = utils.vertices_from_actor(brick_actor_single)

num_vertices = vertices.shape[0]

num_objects = brick_centers.shape[0]

sec = np.int(num_vertices / num_objects)

Vertices Array storing vertices of all the objects.

num_vertices Number of vertices required to render the
objects.

num_objects Number of objects rendered

sec Number of vertices required to render a
single object.

Now the pybullet and fury objects can be synced together by the following snippet:

def sync_brick(object_index, multibody):

pos, orn = p.getBasePositionAndOrientation(multibody)

rot_mat = np.reshape(

p.getMatrixFromQuaternion(

p.getDifferenceQuaternion(orn, brick_orns[object_index])),

(3, 3))

vertices[object_index * sec: object_index * sec + sec] = \

(vertices[object_index * sec: object_index * sec + sec] -

brick_centers[object_index])@rot_mat + pos

brick_centers[object_index] = pos

brick_orns[object_index] = orn

In order to Sync correctly, we do the following:

1. First we get the current position and orientation of the objects in the pybullet world
with the help of p.getBasePositionAndOrientation.

2. Then we calculate the difference between two quaternions using
p.getDifferenceFromQuarternion.

3. The said difference is then passed to p.getMatrixFromQuaternion to calculate the
rotation matrix.

4. Now the method returns a tuple of size 9. Therefore we finally need to reshape the
said tuple into a 3x3 matrix with the help of np.reshape.

5. Next, we slice the necessary part of the vertices which render our desired object.
6. Then we bring it back to the origin by subtracting their centers.
7. After that we perform matrix multiplication of the rotation matrix and the vertices to

orient the object.
8. After orientation we bring the object to its new position.
9. Finally we update the centers and the orientation of the object.

Lastly, we call this function in our timer callback to sync the objects correctly.

NOTE: VTK has an in-built method to handle gimbal locks therefore using
actor.SetOrientation may lead to unwanted spinning simulations each time a gimbal
lock is experienced. Hence, it is always advisable to use vertices and its corresponding
rotation matrix to set the orientation.

Rendering Joints

A simulated robot as described in a URDF file has a base, and optionally links connected by
joints. Each joint connects one parent link to a child link. At the root of the hierarchy there is
a single root parent that we call base. The base can be either fully fixed, 0 degrees of
freedom, or fully free, with 6 degrees of freedom. Since each link is connected to a parent
with a single joint, the number of joints is equal to the number of links. Regular links have
link indices in the range [0..getNumJoints()] Since the base is not a regular 'link', we use the
convention of -1 as its link index. We use the convention that joint frames are expressed
relative to the parent center of mass inertial frame, which is aligned with the principal axis of
inertia. To know more how joints are implemented in pybullet refer the official docs here.

We can create and sync joints in pybullet and fury by following a few simple steps:

Firstly, in order to create objects with multiple joints we need to keep track of the following
parameters:

Variable Shape Description

nb_links 1, 1 Number of links to be
rendered.

link_masses nb_links Masses of the links.

linkCollisionShapeIndices nb_links Array tracking the collision
shape IDs.

linkVisualShapeIndices nb_links Optional as we won't be
using pybullet’s GUI render.

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.e27vav9dy7v6

linkPositions nb_links, 3 Position of the links in
[x, y, z]

linkOrientations nb_links, 4 Orientation of the links in
[x, y, z, w]

linkInertialFramePositions nb_links, 3 Position of the inertial frame
of the links

linkInertialFrameOrns nb_links, 4 Orientation of the inertial
frame of the links.

indices nb_link Link ID each corresponding
link is supposed to attach at.

jointTypes nb_link The type of joint between
the links. Multiple joint types

are available.

axis nb_links, 3 The axis at which each link
is supposed to rotate.

linkDirections nb_links, 3 Direction vector required to
render links in fury.

Extra Arrays such as linkHeights, linkRadii etc may be required based on the link shape.
Base link is rendered separately, hence the above parameters should not contain
information about the base link.

Now separately create definitions for the base link using the following parameters. Once we
are ready with the required link parameters and definition, we can create a multibody to be
rendered in the pybullet world. We can do so using p.createMultiBody. Here’s a snippet:

rope = p.createMultiBody(base_mass,

base_shape,

visualShapeId,

basePosition,

baseOrientation,

linkMasses=link_Masses,

linkCollisionShapeIndices=linkCollisionShapeIndices,

linkVisualShapeIndices=linkVisualShapeIndices,

linkPositions=linkPositions,

linkOrientations=linkOrientations,

linkInertialFramePositions=linkInertialFramePositions,

linkInertialFrameOrientations=linkInertialFrameOrns,

linkParentIndices=indices,

linkJointTypes=jointTypes,

linkJointAxis=axis)

Once we are done with the multibody we can create the actor to render the links:

rope_actor = actor.cylinder(centers=linkPositions,

directions=linkDirections,

colors=np.random.rand(n_links, 3),

radius=radii,

heights=link_heights, capped=True)

We can sync the joints using the following code snippet:

def sync_joints(actor_list, multibody):

for joint in range(p.getNumJoints(multibody)):

pos, orn = p.getLinkState(multibody, joint)[4:6]

rot_mat = np.reshape(

p.getMatrixFromQuaternion(

p.getDifferenceQuaternion(orn,

linkOrientations[joint])),

(3, 3))

vertices[joint * sec: joint * sec + sec] =\

(vertices[joint * sec: joint * sec + sec] -

linkPositions[joint])@rot_mat + pos

linkPositions[joint] = pos

linkOrientations[joint] = orn

Here, we determine the total number of joints using p.getNumJoints and run a loop to
iterate through all the joints present within the object. Once we get access to a particular
joint we use the p.getLinkState to get various information about a particular joint. Within
the list of information we have access to positions and orientation of the joints at index 4
and 5. So we perform the query to get the position and orientation of the joints. After that
the process of translation and rotation are the same as shown here.

Examples

Brick Wall Simulation

The code for the above simulation can be found here.

https://github.com/Nibba2018/fury/blob/physics/docs/tutorials/05_physics/viz_brick_wall.py

Ball Collision Simulation

The code for the above simulation can be found here.

https://github.com/fury-gl/fury/blob/master/docs/tutorials/05_physics/viz_ball_collide.py

Brick Wall Simulation(Single Actor)

The code for the above simulation can be found here.

https://github.com/fury-gl/fury/blob/master/docs/tutorials/05_physics/viz_brick_wall.py

Chain Simulation

The code for the above simulation can be found here.

https://github.com/fury-gl/fury/blob/master/docs/tutorials/05_physics/viz_chain.py

Wrecking Ball Simulation

The code for the above simulation can be found here.

https://github.com/fury-gl/fury/blob/master/docs/tutorials/05_physics/viz_wrecking_ball.py

Domino Simulation

The code for the above simulation can be found here.

https://github.com/fury-gl/fury/blob/master/docs/examples/physics_using_pybullet/viz_domino.py

