
COMPSCI 326 - Web Programming​
Homework 9 - Rules & Fetch - individual assignment 

due November 15, 2021, 11pm EST 
(GitHub classroom link: https://classroom.github.com/a/7P6ex0uB) 

 

 
This is the ninth part of a series of assignments around the game of Scrabble. We hope that it 
will be a fun experience in progressively learning all pieces of modern web development, so as 
to engineer a fully functional game. In this assignment, we will add (most of) the Scrabble rules 
regarding placement and scoring, as well as use our previously written API. 
 
Please submit this assignment on GitHub Classroom. It will be helpful to come up with test 
cases, and we encourage you to share them amongst each other; this will make everyone’s 
code better and is actually how Quality Assurance (QA) can work in practice. However, this is an 
individual assignment and you cannot share code; submissions will be run against plagiarism 
detection tools. Additionally, we will be spot checking the code for good coding practices. It is 
expected your code does not contain (1) extraneous variables/code, (2) missing semicolons, 
(3) missing curly braces, (4) use of double equals, (5) use of let when a const would suffice, 
(6) use of var, (7) inconsistent return values. Furthermore, you should use whitespace 
consistently and to make the code legible. Now that you’ve learned how to use ESLint, it should 
be easy to satisfy these requirements. 
 
You will find a template with support code when you create your repository. You should import 
the files you previously used in the client and server directories respectively (or of course use 
the solution posted on Slack). Note both directories will be used this time. Please do not 
rename any of the existing files or change the directory structure. You are free to create 
more files and import them. However, you cannot use any external modules beyond those 
provided without prior permission. 

https://classroom.github.com/a/7P6ex0uB
https://en.wikipedia.org/wiki/Scrabble


 

1.​Rules 
In this first part, we will add some of the rules of Scrabble that we didn’t include in the past 
assignments. Doing this is relatively hard, and out of scope for this class. Therefore, we will 
provide a version that is updated to support (most of) the actual Scrabble rules. We will provide 
an updated game.js (which contains most of the changes) when this assignment is released, 
and a full version once everyone has submitted HW#8. If you’ve done extra styling / features for 
previous homeworks, please merge both versions instead of just keeping the provided one! 
To be clear, for this part of the homework, you need to either: 

-​ Incorporate the provided game.js code into your own version of the game. 
-​ If you do not have a working version, use the provided version once it is released. 

 

2.​Serving our browser code with the server 
We will again provide some code for you to serve your client files (index.html, main.js, …) 
through the server. This is necessary to avoid CORS issues, where you load different parts of 
your website through different servers, leading to browser errors. We will provide a index.js file 
that will contain the previous code from HW#7 and be capable of serving files from the client 
directory. You will need to make small modifications to this file to write the correct MIME type in 
the header when serving a file. In our case, you can only worry about HTML, CSS, and 
JavaScript files. Not doing this can cause browsers to fail to load files (notably JavaScript files). 

3.​Using the API endpoints 
Lastly, you will integrate the API endpoints we wrote for HW#7. Whenever a word is played, you 
should use /wordScore. You will also add a button to end the game, and call /gameScore when 
that button is clicked. You should record both players’ scores when the game ends. You can 
optionally add logic to end the game following the rules (i.e. no tiles in the bag, no more possible 
moves, …), but you need to also have a button to make testing easier. Finally, you will display a 
table of the top word scores and game scores, using /highestWordScores and 
/highestGameScores, respectively. 

https://docs.google.com/document/d/1ZOXDYt0qjV7jXRSMHtA8ABhFhwFYutxoyc8eaaE2RcQ
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.google.com/document/d/1PMZxj9nLpOz3cgEN1gOTnzAMrmeVrfyf3cMjBRAD1eg
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://docs.google.com/document/d/1PMZxj9nLpOz3cgEN1gOTnzAMrmeVrfyf3cMjBRAD1eg

	1.​Rules 
	2.​Serving our browser code with the server 
	3.​Using the API endpoints 

