
GSoC 2022 
Adding GPU Support to mlpack 

Project size Large ~350 hours 
 

●​ Name: Gopi M. Tatiraju 
●​ University/school: Working 
●​ Field of study: Computer Science 
●​ Date study was started: June 2017 
●​ Date study ended: June 2021 
●​ Occupation: Software Developer(FinTech industry) 
●​ Email: tgopimanohar@gmail.com 
●​ IRC nick (if applicable): heisenbug 

 
 

●​ What languages do you know? Rate your experience level (1-5: rookie-guru) for 
each. 
C++: 3.5 
Python: 4 
 

●​ How long have you been coding in those languages? 
C was my first programming language which was around 2013, and in the same year, I 
started exploring C++ as a part of my high school curriculum. I started python in 2017 
when I went to university.   
 

●​ Are you a contributor to other open-source projects? 
Yes, I’ve been trying my best to contribute to open-source projects. 
 

●​ Do you have a link to any of your work (i.e. github profile)? 
Github: https://github.com/heisenbuug 
 
 

●​ Have you taken any coursework relevant to machine learning? 
I have taken the Machine Learning Course by Andrew Ng and some other MOOCs from 
MIT Opencourseware and such platforms. 
 

 
 
 
 
 
 
 
 

https://www.coursera.org/learn/machine-learning


 
 
 

Project Abstract 
 
The project introduces GPU support to mlpack. Currently under the hood mlpack uses 
Armadillo as a high quality linear algebra library based on CPU. The goal of the project is to 
contribute to Bandicoot which is the GPU version of armadillo and is under development. I will 
be implementing CUDA kernels which mlpack can utilize to train models on  NVIDIA GPUs. 
 

Idea growth 
 
The idea originates from the Bandicoot project. Currently mlpack is built on armadillo. 
Bandicoot is basically armadillo on a GPU(hence faster) and hence with some design 
changes(about which I will discuss later) we can introduce GPU support to mlpack.  
 
Last year while working on my previous GSoC(2021) project with mlpack, me and my mentor 
Omar were already planning to work on some template design changes in mlpack but since it 
was a bit out of scope of the project we decided to work on it later. I guess the time is now. 
 
With regards to the project we have to provide implementation for multiple backends, but I 
guess first we should work on one backend, CUDA preferably. Or maybe we should work on 
both? 
 
We already had many discussions about this in mlpack’s meet-up and considering the nature 
and hours of project this year I think this can be a really good project. This project would 
definitely not introduce full-fledged GPU support, but once we get started with some layers we 
can keep working our way. This project will be like an opening act for Mlpack GPU support.  
 

Overview 
 
The project will require work on 2 repos. 

●​ mlpack 
●​ bandicoot 

 
Bandicoot is a GPU accelerator add-on for the Armadillo C++ linear algebra library on which 
mlpack is built. I will be basically providing support for the NVIDIA backend(CUDA). 
 



Final design goal is that, to utilize bandicoot, all we have to do is replace the arma namespace 
with coot namespace. Bandicoot will contain all the kernel implementations and GPU related 
code. 
 
 
My goal for this project is to add GPU support for CNNs to mlpack. I will be implementing all the 
arma functions being utilized by mlpack’s ANN codebase. The goal is to have support for 
training a CNN on a GPU using mlpack. Project can be divided into further parts: 
 

1.​ Making mlpack ready for bandicoot, i.e. changing eT to MatType. 
2.​ Implementing CUDA kernels(toughest part) 
3.​ Benchmarking the kernels and optimizing if required 
4.​ Writing tests for bandicoot 
5.​ Benchmarking the implementations 
6.​ Compiling an example to train a network on GPU 
7.​ A web page about mlpack GPU support 

 
 

Example/Models using GPU 
Considering the mlpack’s ResNet model 
Here we can divide code into the following parts. We will be working on each part and adapting 
them for coot. 

●​ Declaring some basic variables 
This part is fairly simple and doesn’t require any changes. Here we initialize variables 
like step_size, number of neurons, etc. 

●​ Loading/Saving data 
The current parser is not coot ready, i.e. it is still hardcoded to load data into arma 
matrices only. These changes will mostly have nothing to do with parser performance 
since we are only making a design change to make mlpack more compatible with any 
matrix backend, in this case GPU backend. 

●​ Preprocessing the data 
For starters functions like Split should be ready for bandicoot. 
https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/data/split_data.hpp 
 
Most parts in the mlpack/core/data/ need to be worked on. We will be working on parts 
like parser and split function. 
 

https://github.com/mlpack/examples
https://github.com/mlpack/models/tree/master/models/resnet
https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/data/split_data.hpp


●​ Specify NN model 
As mentioned above most of the layers are already adapted for coot, so we can worry 
less about that.  

 

●​ Train the network 
This part is also mostly done, for reference the new Train() should look like this. 

●​ Save the model 
Comes under the mlpack/core/data/ needs some adaptation with new design. 

 

Making mlpack ready for bandicoot 
Most of the mlpack functions follow this signature, considering Forward 
 
template<typename eT> 

void Forward(const arma::Mat<eT>& input, arma::Mat<eT>& output); 
 

  
eT is the element type of the arma::Mat, so that the user can pass an element type int, float etc. 
But if the user wants to use some other matrix this design will not work, here we are sure to use 
arma. Since the plan to introduce the GPU support, mlpack has decided to change this design.  
 
Now we won’t be passing the Element Type, but rather we will be passing the Matrix Type so 
that we can use any matrix backend. 
 

 void Forward(const MatType& input, MatType& output); 

 
This function can either accept an arma::mat(CPU) or a coot::mat(GPU). 
This makes sure that we don’t have to write any kind of new wrapper classes for the GPU based 
matrix implementation. 
 
Work done by Ryan on the Forward(ann-vtable branch) can be taken as inspiration for all the 
other parts of the library. These design changes are needed mostly everywhere in the code 
base; we will be mainly concentrating on functions utilized by ANN codebase. 
 
I am working on a PR in which I will make the above mentioned changes for the parser(Data 
loader) of mlpack. Parser will include loading/saving of .csv files and pre-build models. If we 
have time I will also adapt other functions in mlpack/core/data/ related to data-processing like 
mlpack::split(). 
 

https://github.com/zoq/mlpack/blob/1645bb22eba65ba22b3ea5d4ce5769397d41aa9d/src/mlpack/methods/ann/ffn.hpp#L155
https://github.com/mlpack/mlpack/blob/3279ed30341b3525e79937cc77b17aaae184e72e/src/mlpack/methods/ann/layer/linear.hpp#L79
https://github.com/zoq/mlpack/blob/1645bb22eba65ba22b3ea5d4ce5769397d41aa9d/src/mlpack/methods/ann/ffn.hpp#L266
https://github.com/zoq/mlpack/tree/ann-vtable


I hope to get most of these changes before the GSoC starts since this is mostly just a design 
change. 

 

Implementing CUDA kernels 
We need to implement all the arma functions that ANN codebase uses. I am making this list 
keeping in mind that at the end of the project we want to support ResNet Model 
 
Layers we need to work on, we won’t be working on layers directly but rather on the arma 
functions which these layers are using. List of layers 

●​ Linear 
●​ Sequential 
●​ AddMerge 
●​ ReLU 
●​ IdentityLayer 
●​ Padding 
●​ MaxPooling 
●​ AdaptiveMeanPooling 
●​ CrossEntropyError  

 
I’ve mostly covered all the functions we have to work on, if anything more comes up we can add 
those as well. 
​
List of CUDA kernels we need to implement 
 

●​ Functions of Vectors/Matrices/Cubes 
○​ vectorise() 
○​ reshape() 
○​ flipr() 
○​ flipd() 

 
●​ Decompositions, Factorisations, Inverses and Equation Solvers 

○​ solve() 
○​ qr_econ() 
○​ svd() 

●​ Signal & Image Processing 
○​ fft2() 
○​ ifft2() 

 
We can use libraries like thrust, cuSolver, cuRAND for the implementation of the above 
mentioned functions. 

https://github.com/mlpack/models/tree/master/models/resnet
http://arma.sourceforge.net/docs.html#vectorise
https://docs.nvidia.com/cuda/thrust/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://developer.nvidia.com/curand


 
Not everything needs to be on the GPU, for example when considering shuffle() some 
part(generate random permutation list) of the code is better off on CPU while remaining on 
GPU. 
 
Goal is to first come-up with a working implementation first. Then time the kernel and if it’s slow 
or bottleneck then we can follow up with more complex strategies.   
 
Function list for template parameter change 
 

File/Function Name Comments 

network_init.hpp Initialize, needs work 

ann/layer/ Most of the layers are ready for coot 
Work on the required layer(if any) from 
not_adapted/ 

core/data/ split() is not yet adapted for coot 

core/data/ load/save is not yet adapted for coot 

  
 
List of layers that are still written with the old boost::visitor interface: 
https://github.com/zoq/mlpack/tree/ann-vtable/src/mlpack/methods/ann/layer/not_adapted 
Layers that are not listed here are adapted to use inheritance instead. 
 
Ryan went ahead and made most of the layers bandicoot ready(except for ones in the not 
adapted directory), i.e. each class has MatType as template parameter compared to eT 
previously and some other changes. 
 
If required we can work on other layers, adapt each layer to use inheritance and make them 
bandicoot ready. 
 

Benchmarking the kernels and optimizing if required 
Once we come-up with a kernel for the said function we need to make sure that it is optimized 
enough to give us a bump.  
 
Plan is to first write the most basic form of the required kernel and then use tools like profiler to 
understand the bottlenecks and work on them until we get to a satisfactory point. 
 

https://github.com/zoq/mlpack/blob/1645bb22eba65ba22b3ea5d4ce5769397d41aa9d/src/mlpack/methods/ann/init_rules/network_init.hpp#L52
https://github.com/zoq/mlpack/tree/ann-vtable/src/mlpack/methods/ann/layer/not_adapted
https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/data/split_data.hpp
https://github.com/zoq/mlpack/tree/ann-vtable/src/mlpack/methods/ann/layer/not_adapted


We can just time them against their CPU counterpart to make sure that they are not 
bottlenecked. We can follow-up on the same benchmarking strategy that Ryan has followed 
here. 
 

Writing tests for bandicoot 
Each implemented function must be tested individually and in combination with other functions. 
Some tests are already implemented in bandicoot. We can use the same design and write tests. 
We might also be able to use test-cases from armadillo. 
 

Benchmarking the implementations 
Once we are done implementing all the required kernels, it's time to see the code in action and 
compare with other and mlpack(CPU) implementations. 

●​ mlpack CPU vs mlpack GPU 
●​ mlpack GPU vs some other library GPU implementation 

 
Comparing it with our own CPU implementation will give us an idea of how much of a 
performance bump we can get when mlpack runs on GPU. 
 
While going against the other implementation we can figure out how much more we need to 
speed up the implementation to beat the standards. 
 

Compiling an example to train a network on GPU 
Once we reach a high enough score, we can now implement some ready to use examples 
which can be added in the example repo. 
 
Some small changes in MakeFile might be required. Maybe while building this repo we can 
choose which namespace to use, arma or coot and hence we can in future have all examples 
running for both CPU and GPU. This should not be complex and can be discussed in further 
stages as well.   

​
A web page about mlpack GPU support 
Once we have all the testing and benchmarking results we can compile it in the form of a web 
page and host it on mlpack’s website. It’s time to show-off the GPU power. 
 

https://gitlab.com/conradsnicta/bandicoot-code/-/tree/unstable/benchmarks
https://gitlab.com/conradsnicta/bandicoot-code/-/tree/unstable/tests
https://github.com/mlpack/examples


Relevant issues and PR 
I’ve already started working on some parts of the project. 

●​ Getting started with bandicoot: issue 
●​ Basic skeleton for join_cols: merge request 
●​ For Neural networks we have to implement a NN outside mlpack and train it with 

armadillo and ensmallen. Suggested here. 
 

​
Project Timeline ~350 hours 
 
The coding period is 12 weeks. 
 
12 weeks of time seems fine to me, at max I would like to finish the project in 15 weeks. 
 

●​ Pre Coding period(~12th June) 
Before the official coding period begins I would like to complete all the adoption changes 
from mlpack’s side. I will concentrate on mlpack/core/data/ directory. Firstly I will start 
with csv-parser and then to some data manipulation functions like mlpack::split(). 

​  
I would also put some more time in research, like reading about kernels, and finding 
some interesting resources that might help us. Discussion with mentor regarding kernel 
implementations and more planning to make further development smoother. 
 

●​ June 13th - June 19th: Complete join_cols implementation 
I’ve already started working on join_cols implementation. Initial idea is to implement it 
using cudaMemCpy and benchmark it and then decide if we need a kernel 
implementation or using cudaMemCpy is fast enough. Some discussion. 
   

●​ June 20th - June 26th 
Will start working on implementing functions of Matrices. Let's start by implementing 
vectorise(). Goal would be first coming up with a working kernel and then time it and 
proceed accordingly. 
 

●​ June 27th - July 3rd 
This week I will start working on reshape(). Write the implementation, test it and if it 
bottlenecks, try working out some more complex strategies. 
 

●​ July 4th - July 10th 
Will start working on fliplr() and flipud(). 
 

●​ July 11th - July 17th 

https://gitlab.com/conradsnicta/bandicoot-code/-/issues/19
https://gitlab.com/conradsnicta/bandicoot-code/-/merge_requests/23
https://gitlab.com/conradsnicta/bandicoot-code/-/issues/10
https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/data/split_data.hpp
https://gitlab.com/conradsnicta/bandicoot-code/-/merge_requests/23
https://matrix.to/#/!WfXMlUQzQrsXfCKmWK:matrix.org/$d1uZmKI1rSTQnCHhhJmqdtDllnq2-UmCKcskNXZLHxw?via=libera.chat&via=matrix.org&via=gitter.im
http://arma.sourceforge.net/docs.html#vectorise
http://arma.sourceforge.net/docs.html#reshape
http://arma.sourceforge.net/docs.html#flip


Starting this week I would like to start working on some signal and image processing 
functions. I would start with fft2 and ifft2(). 
 

●​ July 18th - July 24th 
I am assuming fft2 and ifft2 might take more than a week even if not we can use the 
extra time to make sure that we have implemented all the matrix functions that we need 
to support ResNet. 
 

●​ July 25th - July 31st 
Coming four weeks I will be concentrating on Decompositions, Factorisations, 
Inverses and Equation Solvers. I will start with solve() which is used to solve a system 
of linear equations. On quick thought we can use QR Decomposition from cuSolver to 
solve the system. Note that this is a dense system. 
 

●​ August 1st - August 7th 
 I will start working on economical QR decomposition i.e. qr_econ(). Implementing this 
might be a bit complex. If we come-up with a good kernel, I think we can use the same in 
solve()? 
 

●​ August 8th - August 14th 
We can get started with singular value decomposition. svd() is a bit more complex. We 
can take help of cuSolver to implement this. 
 

●​  August 15th - August 21nd 
Considering we will not be able to finish deviating from the above timeline, these 2 
weeks are for cover-up and remaining work. 

 
●​ August 22rd - August 28th 

Considering we are on time, I will use these 2 weeks to implement some stat functions 
like median, standard deviation, variance.  
 

●​ August 29th - Sept 5th 
Benchmarking individual kernels will be the main concentration here. Although we will be 
doing that side by side as well, benchmarking numbers now will be final since we are at 
the end of the project, if at all any kernel would require more work, we can add it in future 
work sections. 
 
I will also be writing tests for bandicoot. We already have some implemented here, so we 
can follow the same design. I guess we can also use test-cases from armadillo(as 
inspiration). 
 

●​ Sept 6th - Sept 12th(final week) 
Wrapping up by writing the final report of the project. Will also work on creating a web 
page to show the GPU support with some speed upgrade graphs. 

http://arma.sourceforge.net/docs.html#fft2
http://arma.sourceforge.net/docs.html#solve
http://arma.sourceforge.net/docs.html#qr_econ
http://arma.sourceforge.net/docs.html#svd
https://gitlab.com/conradsnicta/bandicoot-code/-/tree/unstable/tests


 
At the end I will open an issue which will talk about the future work regarding GPU 
support. Any developer who would like to contribute to bandicoot, this issue can be like a 
contribution guidelines  

 
 
Extra Work 
Just a list of points I would like to work on if we can complete all the above-mentioned tasks 
before the end of the coding period. 

●​ Compile a list of functions needed by mlpack to extend GPU support 
●​ Write a short sample on how to contribute to mlpack GPU support 
●​ Making mlpack completely ready Bandicoot 

 
 

 
 

Future Work 
After completing GSoC successfully I am also planning to apply for NumFocus SDG and 
continue working on the project. 
  
Even with or without SDG I will continue to contribute to mlpack as I’ve been doing for the past 2 
years.  
 
The scope of this project goes beyond the GSoC and wishes to achieve something that can be 
a major upgrade to the open-source community.   
 
 
 
 


	Overview 
	Example/Models using GPU 
	●​Declaring some basic variables 
	●​Loading/Saving data 
	●​Preprocessing the data 
	●​Specify NN model 
	●​Train the network 
	●​Save the model 

	Making mlpack ready for bandicoot 
	Implementing CUDA kernels 
	Benchmarking the kernels and optimizing if required 
	Writing tests for bandicoot 
	Benchmarking the implementations 
	Compiling an example to train a network on GPU 
	​A web page about mlpack GPU support 
	Relevant issues and PR 

