
Arrow C++ Data Frame Project
Wes McKinney
May 2019

This document discusses some design requirements and use cases for a higher level semantic
API / interface (called a “data frame”) for interacting with in-memory Arrow datasets. This is to
be developed on top of the existing low-level Array, RecordBatch, and Table data structures and
is intended to offer a layer of usability and productivity in similar style to popular “data frame”
libraries in languages like Python (pandas) and R (data.table, dplyr, base R).

This project is a parallel, complementary effort to the previously discussed “Datasets” and
“Query Engine” projects, and is not intended to compete with, conflict with, or replace any of the
work that has been discussed there. In fact, both the Datasets and Query Engine components
would be intended to be used in tandem with the Data Frame interface. To make a useful piece
of software, a number of opinionated design choices around data structure and function
execution semantics will have to be made, so I think it best to develop a data frame library as an
add-on component for the Arrow core platform.

References

●​ C++ Datasets
https://docs.google.com/document/d/1bVhzifD38qDypnSjtf8exvpP3sSB5x_Kw9m-n66FB
2c/edit?usp=sharing

●​ C++ Query Engine
https://docs.google.com/document/d/10RoUZmiMQRi_J1FcPeVAUAMJ6d_ZuiEbaM2Y3
3sNPu4/edit?usp=sharing

Table of contents

Background and Motivation

Goals and Non-goals

More detailed concepts and features
Data frames vs. the Arrow columnar format
Interactions with Datasets, Query Engine components
Interactions with ChunkedArray, RecordBatch, Table, Schema data structures
Mutation and copy-on-write semantics

Reasoning about memory sharing
Copying data structures
Mutation threadsafety

https://docs.google.com/document/d/1bVhzifD38qDypnSjtf8exvpP3sSB5x_Kw9m-n66FB2c/edit?usp=sharing
https://docs.google.com/document/d/1bVhzifD38qDypnSjtf8exvpP3sSB5x_Kw9m-n66FB2c/edit?usp=sharing
https://docs.google.com/document/d/10RoUZmiMQRi_J1FcPeVAUAMJ6d_ZuiEbaM2Y33sNPu4/edit?usp=sharing
https://docs.google.com/document/d/10RoUZmiMQRi_J1FcPeVAUAMJ6d_ZuiEbaM2Y33sNPu4/edit?usp=sharing

Lazy filtering and filter-fusion
Zero-copy optimized column selection and filtering
Column statistics
Indexing and lookups

Background and Motivation

In popular use, “data frames” offer an alternative kind of API user interface for manipulating
structured data compared with SQL queries used by relational and analytic databases. These
interfaces offer numerous programming conveniences for data that is entirely memory-resident
(or memory-mapped).

In most cases, analytical operations are evaluated in an eager-like fashion (where each
operation materializes its results entirely in memory) and presumes to have random access to
the entire dataset at any given time

Some example data frame projects includes

●​ pandas https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
○​ See also Python for Data Analysis http://amzn.to/2vvBijB

●​ R base data.frame
●​ data.table (R language)

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
●​ dplyr (R language) https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html
●​ SFrame https://github.com/turi-code/SFrame
●​ pydatatable https://github.com/h2oai/datatable
●​ Vaex https://github.com/vaexio/vaex
●​ DataFrames.jl (Julia) https://juliadata.github.io/DataFrames.jl/stable/man/getting_started/

As the Apache Arrow community has developed, we have expanded into many application
domains including those (“data science” or “machine learning”-focused) where data frame style
work is the predominant mode. By virtue of our high performance IO utilities (e.g. for reading
Parquet files), an increasing amount of data is passing through Arrow data structures, but is
being converted immediately to other data structures, like pandas DataFrame objects. This has
multiple problems:

●​ Conversions are not free, even though the conversions have been optimized
(https://wesmckinney.com/blog/high-perf-arrow-to-pandas/)

●​ Many users are converting to pandas, performing some operations using pandas, then
converting right back to Arrow, such as to write back to a Parquet file. Some of these

https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
http://amzn.to/2vvBijB
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html
https://github.com/turi-code/SFrame
https://github.com/h2oai/datatable
https://github.com/vaexio/vaex
https://juliadata.github.io/DataFrames.jl/stable/man/getting_started/
https://wesmckinney.com/blog/high-perf-arrow-to-pandas/

operations are relatively trivial like performing a comparison on a column and filtering out
rows not matching the result of the comparison.

●​ Memory is wasted due to data duplication in memory as a result of serialization. This is
especially onerous because other tools may use a lot more memory to represent the
same Arrow dataset

In C++ we have begun developing “kernel functions”
(https://github.com/apache/arrow/tree/master/cpp/src/arrow/compute/kernels) which perform
units of computation. The interface for these kernel functions is relatively low-level, and details
such as efficient evaluation on chunked arrays or parallel execution are not straightforward in all
cases. Additionally, we have struggled a bit with having public APIs for Array-level execution
versus ChunkedArray-level execution.

The kernel functions we are developing can be used as the building blocks for a dataflow-style
query engine (see link above), but they can also be used to build a “data frame”-style data
manipulation interface. A data frame interface can relatively easily abstract away a number of
tedious details associated with kernel invocation to provide simple high-level, easy-to-use C++
APIs, which can also be wrapped in downstream binding languages (Python, R, Ruby).

Thus, this document proposes general scope for the semantics of a data frame interface in C++
inside Apache Arrow that can bring high-level usability to our kernel functions and enable users
to manipulate fully in-memory datasets in the same way that they currently use other data frame
libraries that use implementation-specific columnar formats instead of the Arrow standard.

Goals and Non-goals
Since in-memory and memory-mapped datasets are interchangeable in algorithms (due to the
zero-copy nature of Arrow), any reference to interacting with “in-memory” data also includes
memory-mapped on-disk data.

Goals include

●​ Internal data representation is the Arrow columnar format. Data frame columns can be
chunked

●​ Trivial support for memory-mapped data frames
●​ Stack data frames vertically (“concatenate”) without copying memory
●​ Semantically mutable with copy-on-write semantics: i.e. do not copy any memory unless

you have the sole reference to it (as verified by shared_ptr reference counts)
●​ Eagerly evaluated operations with rudimentary operator combinations (for example,

filtering can be combined with aggregation for better performance)
●​ Multi-threaded execution of kernels against in-memory Arrow columnar data through

easy-to-use, high level APIs

https://github.com/apache/arrow/tree/master/cpp/src/arrow/compute/kernels

●​ Optimized data-frame-specific implementations of certain key operations
●​ Caching of column statistics (min, max, sum, mean, etc.) usable to hint algorithm

selections
●​ Reading data frames into memory streamed from the forthcoming datasets API
●​ Support different indexing and in-memory partitioning strategies to accelerate

aggregations or similar
●​ Evaluate user-defined functions having arrow::Array input and output

Non-goals (things we are not doing) include

●​ Cloning the API or semantics of other data frame libraries like pandas
●​ …

More detailed concepts and features
In this section I will jot down some ideas about various parts of the project and also provide
pre-emptive answers to common questions/confusions/misconceptions.

Data frames vs. the Arrow columnar format
Data frames use the Arrow columnar format to represent data in-memory while providing
higher-level computational semantics that operate against Arrow data. The data frame interface
handles two key data structure issues: chunking and mutability.

Many datasets are chunked in memory for various reasons:

●​ Parts of the dataset came from different files, or were produced by different threads of
execution (e.g. multithreaded CSV parsing)

●​ Record batches or tables can be concatenated without copying memory

We already have the arrow::ChunkedArray and arrow::Table data structures -- which are
synthetic, and not part of the Arrow columnar format -- which provide conveniences for working
with chunked datasets. The data frame object will be composed from these existing lower-level
APIs.

The Arrow columnar data structures are not intended to be mutable. However, we can provide
APIs that perform mutations, with those mutations being performed by in-place mutation of
buffers (in certain limited circumstances, see next section)

Interactions with Datasets, Query Engine components
Broadly speaking, we have the following characteristics

●​ Datasets component is responsible for creating a stream of RecordBatches
●​ Query engine component acts on one or more input streams of RecordBatches to

produce an output stream. Data can be input from a Dataset.
●​ Data frame component manipulates a materialized in-memory collection of one or more

RecordBatches. A data frame can also be used as input to the query engine
●​ Kernels provide units of analytical functionality usable by either the data frame or query

engine

Interactions with ChunkedArray, RecordBatch, Table, Schema
data structures
A data frame can be

●​ Constructed from a RecordBatch or Table
●​ Dumped to a Table

The internal representation of a materialized data frame column is a ChunkedArray (which may
have only one chunk)

Mutation and copy-on-write semantics
There are two kinds of mutation that are of interest for us: mutation of the data frame data
structure and mutation of internal memory.

First, on mutation of data structures, my inclination is that in-place mutation of a data frame
(example, adding, overwriting, or removing columns in-place) is an important feature since
producing a new data frame object may involve copying a relatively complex internal data
structure. For these operations, it may make sense to have in-place versions and functional
versions that emit new objects, so the user can choose as they please which makes sense.

There are relatively few operations that require mutation of memory. These are such operations
as:

●​ Assigning a single value in a single column (e.g. a[i] = val)
●​ Assigning multiple values in a column (by indices, boolean selector, etc.)

I think it’s acceptable to provide such mutation operations using copy-on-write. The idea is that if
we infer that memory to be mutated comes from a MutableBuffer and we are the sole reference
to that memory (i.e. there is no known parent member -- e.g. we have not sliced from a larger
buffer), then we can mutate the memory in-place. If we cannot make such an inference (more
on this below), then we must create a mutable, single-reference copy and mutate that.

Reasoning about memory sharing
We have a few mechanisms to determine whether it is safe to mutate a Buffer

●​ If and only if is_mutable_ is true
●​ If and only if the use_count() of the shared_ptr around a Buffer is 1
●​ If and only if the parent_ field is non-null

If any of these three conditions is not true, then the memory must be copied prior to mutation.
Subsequent mutations, then, will not require copying because the newly-allocated Buffer copy
will meet these requirements.

Copying data structures

A data frame as well as its column data structures will require a Copy method to clone the data
structure, so that it can be mutated (example: adding a column). This Copy/Clone step will not
copy any memory.

I’m not sure if it would be useful to have a “deep copy” operation that also copies underlying
data, so at least in the short term it is probably not needed.

Mutation threadsafety

In-place data frame mutations, such as adding, overwriting, or removing columns (which may
alter the schema), should hold a mutex to prevent concurrent mutations.

Determining whether it is safe to mutate memory in place can be costly; we should assess
through benchmarks the cost of determining whether a copy is needed. Consider some example
scenarios:

●​ Multiple threads mutating a column in-place concurrently
●​ A Buffer with use_count=2, where the other shared_ptr copy is destructed at some later

point

My guess is that we should perform the copy-on-write check once while holding a mutex and
then cached. Other mutators will have to block while awaiting for the copy-on-write
(“CanMutate”) check to complete.

Another complexity around mutation is if the data frame provides any APIs that provide public
access to its data. Such APIs will have to invalidate the “can mutate” flag so that subsequent
mutation operations will have to check again and possibly copy memory.

Lazy filtering and filter-fusion
In data frame libraries it is very common to write such code as

df.filter(boolean_condition)

 .get_column(col_name)

 .aggregate(func)

Here filter selects rows based on the true/false values of the boolean condition.

If there are many columns, and only one is of interest, this can generally also be written as:

df.get_column(col_name)

 .filter(boolean_condition)

 .aggregate(func)

This avoids unnecessary filtering and memory allocation.

Some libraries eagerly materialize the filtered data. This can be less memory- and
performance-efficient that passing the boolean condition to a function such as aggregate. For
example:

df.get_column(col_name)

 .aggregate(func, filter=boolean_condition)

I suggest deferring the materialization of filtered results in the data structure until materialization
is required, while also allowing some functions to use the filter condition in execution for better
memory use and performance.

Zero-copy optimized column selection and filtering
With the mutation-safety protections of copy-on-write, it is not necessary to allocate new
memory when selecting columns.

Certain operations, such a boolean filtering (row selection by a condition), can be optimized for
better performance and memory utilization over using Slice operations on the underlying
arrays for contiguous row selections. Because of the minor overhead associated with
Array::Slice, for small selected chunks it will be preferable to invoke a boolean selection
kernel (see ARROW-1558)

Column statistics
Certain statistics are useful to assist with algorithm choice, such as:

●​ Monotonicity / sortedness
●​ Min and max value
●​ Number of null values

It would make sense to compute these once and cache them (in a threadsafe way). If any
mutation operations are performed, then any existing statistics must be invalidated.

Indexing and lookups
Some libraries have found that different indexing strategies can assist with performance and
interactivity

●​ Inverted index, for looking up rows for which a column matches a particular value
●​ Binary/B-tree index, for data frames sorted by keys

While these may not be implemented in the short term, I believe we should consider in the data
frame API where they might fit in and how they can accelerate different operations.

https://issues.apache.org/jira/browse/ARROW-1558

	Arrow C++ Data Frame Project
	Background and Motivation
	Goals and Non-goals
	More detailed concepts and features
	Data frames vs. the Arrow columnar format
	Interactions with Datasets, Query Engine components
	Interactions with ChunkedArray, RecordBatch, Table, Schema data structures
	Mutation and copy-on-write semantics
	Reasoning about memory sharing
	Copying data structures
	Mutation threadsafety

	Lazy filtering and filter-fusion
	Zero-copy optimized column selection and filtering
	Column statistics
	Indexing and lookups

