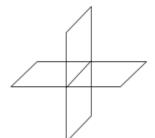
9.3 THE INTERSECTION OF TWO PLANES

Possible Intersections for Two Planes

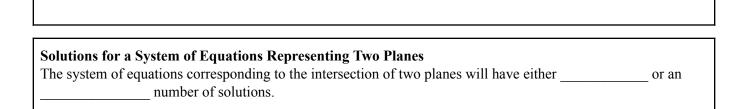
Case 1: Two planes intersecting along a line

Case 2: Two Parallel Planes

Case 3: Two Coincident Planes



It is not possible for two planes to intersect at a ____



Ex. 1 Determine the solution to the system of equations defined by the two planes π_1 : x - y + z = 4 and π_2 : 2x - 2y + 2z = 10. Discuss how these planes are related to each other.

Ex. 2 Determine the solutions to the following system of equations defined by the two planes π_1 : x + 2y - 3z = -1 and π_2 : 4x + 8y - 12z = -4.

Intersection of Two Planes and their Normals

If the planes π_1 and π_2 have $\vec{n_1}$ and $\vec{n_2}$ as their respective normals, we know the following:

- If $\vec{n_1} = k \vec{n_2}$ for some scalar, k, the planes are coincident or they are parallel and non-coincident. If they are coincident, there are an ______ number of points of intersection. If they are parallel and non-coincident, there are ______ points of intersection.
- If $\vec{n_1} \neq k\vec{n_2}$, the two planes intersect in a _____. This results in a _____ number of points of intersection.
- **Ex. 3** Determine solutions to the following system of equations defined by the two planes: $\pi_1: x y + z = 3$ and $\pi_2: 2x + 2y 2z = 3$.

Ex. 4 Determine the solution to the following system of equations defined by the two planes: $\pi_1: 2x - y + 3z = -2$ and $\pi_2: x - 3z = 1$

Ex. 5 Determine an equation of a line that passes through the point P(5,-2,3) and is parallel to the line of intersection of the planes π_1 : x + 2y - z = 6 and π_2 : y + 2z = 1.