

Sonophotocatalytic treatment of wastewater using simulated solar light-driven Bi₂O₃-ZnO nanophotocatalyst sensitized with copper phthalocyanine

By HAMID KAZEMHAKI

Abstract

Bi₂O₃-ZnO photocatalysts with various amounts of copper phthalocyanine (CuPc) as photosensitizer agent were synthesized and used as novel photocatalysts in sonophotocatalytic degradation of methyl orange (MO). The sonophotocatalytic degradation of MO under simulated solar light irradiation was compared with sole photocatalysis and sole sonolysis, and the results showed that the decomposition performance was in the following order: sonophotocatalysis(30 W ultrasonic power) > photocatalysis > sonophotocatalysis (60 W ultrasonic power) > sonolysis. Among CuPc-Bi₂O₃-ZnO sonophotocatalysts with different contents of CuPc from 0% to 2% wt., the sample with 2% wt. indicated the highest MO sonophotodegradation percent of 94.66%. The characterization properties of synthesized sonophotocatalysts were identified by XRD, FESEM/EDX, BET/BJH, FTIR, TEM, and UV-Vis DRS. The XRD patterns indicated that, with increasing the CuPc amount from 0% to 2% wt., the crystallite size of ZnO in studied photocatalysts decreased from 54 to 41 nm. However,

FESEM analysis illustrated fine nanoparticles (15–25 nm) with agglomeration on the outer surface that are related to Bi2O3 and CuPc particles. UV–Vis DRS showed that the sample with 2% wt. of CuPc had the highest visible light absorption and the lowest bandgap energy of 2.63 eV. The highest surface area and the smallest pore size were observed in this sample as well. The reusability test exhibited the excellent stability of CuPc-Bi2O3–ZnO sonophotocatalyst within six consecutive runs with negligible (5%) fading in sonophotocatalytic performance. Scavenger tests indicated that OH radical was not the dominant reactive specie, and sonication via physical aspects and production of other radicals influenced the photocatalytic reaction.

ملخص

تم تصنيع المحفزات الضوئية $\text{BiO}_3 - \text{ZnO}$ بكميات مختلفة من فثالوسيانين النحاس (CuPc) كعامل محسّس ضوئي واستخدامها كمحفزات ضوئية جديدة في التحلل التحفيزي للضوء لبرتقال الميثيل (MO). تمت مقارنة التحلل التحفيزي للضوّاء للعَضَلَات تحت إشعاع الضوء الشمسي المحاكاة مع التحفيز الضوئي الوحيد والتحليل الصوتي الوحيد ، وأظهرت النتائج أن أداء التحلل كان بالترتيب التالي: التحفيز الصوتي (فّرقة الموجات فوق الصوتية 30 وات) > التحفيز الضوئي (60 واط بالموّجات فوق الصوتية) > تحلل الصوت. بين المحفزات الضوئية $\text{CuPc-BiO}_3-\text{ZnO}$ بمحتويات مختلفة من CuPc من 0% إلى 2% بالوزن ، العينة مع 2% بالوزن. أشارت إلى أعلى نسبة تحلل صوتي للخرسانة بنسبة 94.66%. تم تحديد خصائص توصيف المحفزات الضوئية المركبة بواسطة XRD و BET و FTIR و FESEM و EDX و TEM و BJH و XRD. أشارت أنماط XRD إلى أنه مع زيادة كمية النحاس من 0% إلى 2% بالوزن ، انخفض الحجم البلوري -L ZnO في المحفزات الضوئية المدروسة من 54 إلى 41 نانومتر. ومع ذلك ، أوضح تحليل FESEM الجسيمات النانوية الدقيقة (15-25 نانومتر) مع التكثّل على السطح الخارجي المرتّب بجزيئات CuPc و BiO_3 . أظهرت الأشعة فوق البنفسجية - المرئية (DRS) أن العينة ذات وزن 2% يحتوي CuPc على أعلى امتصاص للضوء المرئي وأقل طاقة ذات فجوة نطاّق تبلغ 2.63 فولت. ولاحظت أعلى مساحة سطحية وأصغر حجم مسام في هذه العينة أيضًا. أظهر اختبار إعادة الاستخدام ثباتاً ممتازاً لمحفز صوتي $\text{CuPc-BiO}_3-\text{ZnO}$ خلال ستة أشواط متتالية مع تلاشي ضئيل (5%) في أداء التحفيز الصوتي. أشارت اختبارات الكسح إلى أن جذور OH لم تكن النوع التقاعدي السائد ، وأن الصوتية من خلال الجوانب الفيزيائية وإنتاج الجذور الأخرى أثرت على تفاعل التحفيز الضوئي.

پوخته

وکو مادهی همستیارکمری فوتو (CuPc) به بریکی جیاواز له فثالوسيانینی مس BiO_3-ZnO فوتوكاتالیسته کانی بهکار هیندان. تیکچونی (MO) دروستکران و مک فوتوكاتالیستیکی نوئی له تیکچونی سونو فوتوكاتالیتیکی میتیلی پرتهقال له زیر تیشكی خوری هاوشهو بمراورد کرا لمکمل فوتوكاتالیزی تاکانه و سونولیسی تاکانه، و MO سونو فوتوكاتالیتیکی هیزی سونار) > W ئۇنجمەكان دەريانخست كە ئەدای شىبۇونەوە بەم رىزەھى خوارەوە بۇو: سونو فوتوكاتالیزی (30

CuPc-Bi2O3-ZnO هیزی سونار) > سونولیسیس. له نیوان سونو فوتکاتالیست کانی W فوتکاتالیز > سونو فوتکاتالیز (60 ناماژه‌ی به بهرزترین سهی نمونه‌که به 2% wt.، 2% له 0% wt.، 2% به 0% MO که ناومروکی جیاوازی 94.66% کرد. تاییه‌مندی‌که کانی خسله‌تی سونو فوتکاتالیزره درستکراو مکان به XRD، FESEM/EDX، BET/BJH، FTIR، TEM، UV-Vis DRS و، نهشکانی DRS ایمان بمهه کرد دستنی‌سانکران. نهشکانی UV-Vis در این بیان بهمراه کرد XRD. ناماژه‌ی این بمهه کرد MO ایمان بهمراه کرد اینکو لینه‌مکار او مکان له 54 بز ZnO قبهاره‌ی بلوری، 41 نانومتر FESEM ایمان 25 نانومتر (15-25 نانومتر) لهگمکن کوبونه‌هه له سهی ایمان 41 نانومتر که میکردووه. به‌لام، شیکاری ایمان 2% ده بخست که نمونه‌که به 2 UV-Vis در ایمان CuPc و Bi2O3 رهوی ده بخست ایمان دا که پیومندی‌بیان به تمثولکه‌کانی بیو. ههروه‌ها به رزترین هلمزی‌نی رهوونکی بینراو و کمترین وزه‌ی باندگایی ههبوو که ایمان 2.63 wt. له CuPc رهوبه‌ری رهوکار و بچوکترین قبهاره‌ی کونیله‌کان لم نمونه‌یدا به‌یکرا. تاقیکردن‌هه دهوباره به‌کار هینانه‌هه سونو فوتکاتالیست له ماوهی شمش جار له سهی‌هکدا لهگمکن کالبیونه‌هه که CuPc-Bi2O3-ZnO سه‌قامکیری‌بیکی نایابی جوری OH (%) له نهدای سونو فوتکاتالیستیکدا نیشان دا. تاقیکردن‌هه مکانی سکافینگه رهایش‌هیان بهمراه کرد که رادیکاله‌که‌ی کار لیککه‌ری بالادهست نهبووه، و دنگکردن له ریگه‌ی لایمه‌هه فیزیاییه‌کانه‌هه و بهره‌هه‌هیانی رادیکاله‌کانی تر کاریگه‌ری لسهر کار لیکی فوتکاتالیستیک ههبووه.

لپنکی تویزینه وہ

<https://doi.org/10.1016/j.matchemphys.2022.126355>

About Soran University

Soran University (SUN) is located in the city of Soran, which is about a two-hour drive north-east of Erbil (Arbil, Hewlér), the capital of the Kurdistan Region of Iraq (KRIQ). The city is flanked by the famous Korek, Zozik, Henderén, and Biradost mountains. The medieval mountain village of Rewandiz (Rawanduz, رواندز) is a stone-cast away, and the two cities share this lovely, harmonious upland. While waiting for its green, environmentally friendly building to be erected on a hilltop overlooking the cities of Soran and Rewandiz, its existing city campus has been meticulously set out to accommodate the lovely natural landscape. The new campus will be the first of its type, being walkable, balanced, powered by renewable energy, and compliant with all international environmental regulations. There are 5 Faculties in SUN; Faculty of Arts (FAAR), Faculty of Science (FSCN), Faculty of Education (FEDU), Faculty of Law, Political Science, and Management (FLAW/PSM), and Faculty of Engineering (FENG). Also, there is SUN research centre. Moreover, at SUN, there is a Language Center. SUN signed many Memoranda of Understandings (MoU) with many International Universities,

How to get here

Soran University (SUN) is located in the heart of the city of Soran. The main city campus is easily found on Google Maps for direction.