
Fast frozen & sealed elements in V8
Attention: Shared Google-externally​

Authors: bmeurer@, leszeks@, verwaest@, jarin@,
duongn@microsoft.com​

Last Updated: 2019-04-09

TL;DR This document describes the issue of Object.freeze(), Object.seal(), and
Object.preventExtensions() turning arrays into dictionary mode, and thus making them
slower to access. It also explores two potential solutions to the problem.

Short Link bit.ly/fast-frozen-sealed-elements-in-v8

Bug v8:6831

Background
The integrity level control builtins Object.freeze(), Object.seal(), and
Object.preventExtensions() were introduced with the ECMAScript 5.1 specification, and
they are being used quite a bit already. Later, the ECMAScript 2015 specification introduced
so-called tagged templates, which implicitly use Object.freeze(). More recently, TC39
delegates kicked off a proposal for some yet-to-be-defined way to freeze object prototypes.

Currently, the use of these builtins incurs a performance cost in V8, since they turn arrays into
DICTIONARY_ELEMENTS mode, making any accesses on them slower.

Tagged templates
Tagged templates call Object.freeze() on the strings and the strings.raw arrays to
make sure that user code does not mess with their values. These strings and the
strings.raw arrays are available in the tag function, i.e.:

function tag(strings, ...values) {​
 let s = strings[0];​
 for (let i = 1; i < strings.length; ++i) {​
 s += values[i - 1] + strings[i];​
 }​
 return s;​
}​
​
tag`Hello ${41 + 1}!\n`;​

mailto:bmeurer@chromium.org
mailto:leszeks@chromium.org
mailto:verwaest@chromium.org
mailto:jarin@chromium.org
mailto:duongn@microsoft.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions
https://bit.ly/fast-frozen-sealed-elements-in-v8
http://crbug.com/v8/6831
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions
https://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/6.0/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_templates
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://github.com/bakkot/proposal-freeze-prototype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_templates
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

// → "Hello 42!\n"

​
The strings.raw provides access to the raw string literals, i.e. in the example strings[1]
contains "\n" whereas strings.raw[1] contains "\\n".

Tagged templates are becoming increasingly popular, with more and more libraries and
frameworks adopting it. For example, the following popular libraries make heavy use of the
tagged templates feature:

1.​ lit-html & LitElement (Polymer)
2.​ styled-components
3.​ htm
4.​ common-tags

For example lit-html lets you write HTML templates in JavaScript, and then efficiently renders
(and re-renders) those templates together with data to create (and update) DOM, i.e.:

import {html, render} from 'lit-html';​
​
// A lit-html template uses the `html` template tag:​
let sayHello = (name) => html`<h1>Hello ${name}</h1>`;​
​
// It's rendered with the `render()` function:​
render(sayHello('World'), document.body);​
​
// And re-renders only update the data that changed, without​
// VDOM diffing!​
render(sayHello('Everyone'), document.body);

​
This in turn is used by LitElement to provide lightweight web components utilising the shadow
DOM. In styled-components tagged templates are used to provide easy inline styling for React
components, like in this example:

const Button = styled.a`​
 display: inline-block;​
 border-radius: 3px;​
 padding: 0.5rem 0;​
 margin: 0.5rem 1rem;​
 width: 11rem;​
 background: transparent;​
 color: white;​
 border: 2px solid white;​
 ${props => props.primary && css`​
 background: white;​
 color: palevioletred;​
 `}​

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_templates
https://lit-html.polymer-project.org/
https://lit-element.polymer-project.org/
https://www.styled-components.com/
https://github.com/developit/htm
https://github.com/declandewet/common-tags
https://lit-html.polymer-project.org/
https://lit-element.polymer-project.org/
https://www.styled-components.com/

`;

Performance work-around

There's a (sort of) known work-around for the performance problem, which is to use Babel in the
so-called loose mode, which skips the freezing of the strings and strings.raw arrays (unlike
regular Babel transpilation which does the freezing properly). For example

tag`Hello ${42}!\n`

​
normally translates to

var _templateObject = _taggedTemplateLiteral(
 ["Hello ", "!\n"],
 ["Hello ", "!\\n"]
);​
function _taggedTemplateLiteral(strings, raw) {​
 return Object.freeze(​
 Object.defineProperties(strings, { raw: { value: Object.freeze(raw) } })​
);​
}​
tag(_templateObject, 42)

​
when using the es2015 preset. So both the strings and the strings.raw array are properly frozen
using Object.freeze(). However in loose mode Babel will generate a simpler version of the
_taggedTemplateLiteral function above instead, which looks like this

function _taggedTemplateLiteralLoose(strings, raw) {​
 strings.raw = raw;​
 return strings;​
}

​
and thus doesn't do any freezing of either the strings or the strings.raw array (also the raw
property is initialized using a property assignment instead of Object.defineProperties(),
which means that it's going to be configurable, enumerable and writable in loose mode, but
that's probably a less relevant detail).

TypeScript

For reference, TypeScript by default generates the following code for the above mentioned
example

var __makeTemplateObject = (this && this.__makeTemplateObject) || function
(cooked, raw) {​

https://babeljs.io/
http://2ality.com/2015/12/babel6-loose-mode.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperties

 if (Object.defineProperty) { Object.defineProperty(cooked, "raw", {
value: raw }); } else { cooked.raw = raw; }​
 return cooked;​
};​
tag(__makeTemplateObject(["Hello ", "!\n"], ["Hello ", "!\\n"]), 42);

​
so it behaves like Babel by default when targeting ES3/ES5.

Freezing API objects
Object.freeze(), Object.seal(), and Object.preventExtensions() are often used
to express that certain objects are not supposed to be extended and/or changed. This helps
when designing / implementing safe APIs. The most popular alternative to freezing objects
exposed by APIs is doing defensive copies, which comes at a cost though, and might not match
the intended semantics. Unfortunately using any of the above mentioned builtins on arrays
currently turns these arrays into dictionary mode in the V8 engine, and thus makes it slower to
operate on these arrays.

Currently most frameworks limit the use of above mentioned integrity level control builtins to
debug builds, mostly because of the performance penalty.

FrozenArray in WebIDL

A special case of frozen API object is the FrozenArray array type in WebIDL, which is already
used a bunch in Blink.

Frozen objects and shape transitions (orthogonal)
There's an orthogonal issue in V8, which is also related to the use of Object.freeze(),
Object.seal(), and Object.preventExtensions(), and which affects regular objects as
well. Here certain internal shape transitions in V8 don't play well together with any of the above,
which can lead to drastic performance cliffs (i.e. in one case it was observed that the
performance dropped by more than a 100x). This is tracked by v8:8538 and there's a document
Improve handling of Object.(seal|preventExtensions) that describes the current proposed
solution.

Performance impact
There are two interesting scenarios to consider: the latency case and the throughput case.

The first case (latency) is mostly relevant when using something like lit-html or
styled-components in the context of the browser to perform client-side rendering. In this case

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions
https://heycam.github.io/webidl/#es-frozen-array
https://cs.chromium.org/search/?q=file:idl$+FrozenArray&sq=package:chromium&type=cs
https://cs.chromium.org/search/?q=file:idl$+FrozenArray&sq=package:chromium&type=cs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/seal
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions
http://crbug.com/v8/8538
https://docs.google.com/document/d/1KT3WsIg-kThBiOWyZqFCVwyeAnVczkb0857m0D0o-Ow
https://lit-html.polymer-project.org/
https://www.styled-components.com/

V8 is probably mostly executing code in the interpreter, hasn't reached a steady state, and thus
the impact of having dictionary elements for the strings and strings.raw arrays is probably
less dominant, while still important (it's not unlikely that a simple Polymer application has to
render hundreds of templates quickly during startup).

The second case (throughput) becomes relevant when using for example tagged templates in a
server-side rendering scenario, i.e. in a template engine running on top of express, or in a
potential version of lit-html that does server-side rendering to speed up the first page load . 1

Focusing on this case is becoming more and more critical as popular sites move towards
server-side rendering for the initial page load.

I created a small benchmark to measure the impact of the strings array going to dictionary
mode:

function tag(strings, ...values) {​
 let a = 0;​
 for (let i = 0; i < strings.length; ++i) a += strings[i].length;​
 return a;​
}​
​
function driver(n) {​
 let result = 0;​
 for (let i = 0; i < n; ++i) {​
 result += tag`${"Hello"} ${"cruel"} ${"slow"} ${"world"}!\n`;​
 result += tag`${"Why"} ${"is"} ${"this"} ${"so"} ${"damn"}
${"slow"}?!\n`;​
 }​
 return result;​
}​
​
driver(10);​
driver(100);​
driver(1000);​
driver(10000);​
​
console.time('Time');​
driver(1e6);​
console.timeEnd('Time');

​
It does some warm-up in the beginning to make sure we focus the measurement on the
difference in the strings elements, and not on other factors that are not relevant in the context
of this document. We compare the code above to a version produced by Babel in loose mode:

var _templateObject = _taggedTemplateLiteralLoose(​
 ["", " ", " ", " ", "!\n"],​

1 There's already a package called lit-html-server that provides similar functionality to lit-html on the
server side.

https://expressjs.com/
https://lit-html.polymer-project.org/
https://github.com/popeindustries/lit-html-server
https://lit-html.polymer-project.org/

 ["", " ", " ", " ", "!\\n"]​
),​
 _templateObject2 = _taggedTemplateLiteralLoose(​
 ["", " ", " ", " ", " ", " ", "?!\n"],​
 ["", " ", " ", " ", " ", " ", "?!\\n"]​
);​
​
function _taggedTemplateLiteralLoose(strings, raw) {​
 strings.raw = raw;​
 return strings;​
}​
​
function tag(strings) {​
 var a = 0;​
 for (var i = 0; i < strings.length; ++i) {​
 a += strings[i].length;​
 }​
 return a;​
}​
​
function driver(n) {​
 var result = 0;​
 for (var i = 0; i < n; ++i) {​
 result += tag(_templateObject, "Hello", "cruel", "slow", "world");​
 result += tag(_templateObject2, "Why", "is", "this", "so", "damn",
"slow");​
 }​
 return result;​
}​
​
driver(10);​
driver(100);​
driver(1000);​
driver(10000);​
​
console.time("Time");​
driver(1e6);​
console.timeEnd("Time");

​
We run this test with latest V8, once in the default configuration emulating the throughput case,
and another time passing --noopt to completely disable the optimizing compiler and thereby
emulating the latency case (we take the average of 10 individual runs):

 default (throughput) --noopt (latency)

Original 187 ms 767 ms

Babel loose mode 21 ms 640 ms

​
As you can see, the Babel transpiled version wins in both cases. But what's interesting to note is

that the effect on the peak performance case is a lot more severe with a slowdown of 9x versus
a mere 20% slowdown in the latency case. So server-side rendering using tagged templates is
affected a lot more than when using tagged templates for initial rendering on the client-side.

Note: Of course using tagged templates for rendering is just one possible use case. There are
plenty of others that might be equally relevant, but this document is mostly focusing on this
case for now.

Profiling peak performance
If we profile the peak performance case using --prof we can clearly see that in the original
ES2015 code V8 spends significant amount of time in the KeyedLoadIC builtin, which handles
the case of keyed property access to dictionary arrays:

Whereas in the Babel loose mode code, where the test terminates in 34ms versus 219ms above,
everything can be handled fast in optimized code:

https://v8.dev/docs/profile

Proposed solutions
There are two possible solutions that I can think of which would make sense at this point. We
could either introduce new elements kinds to express the frozen/sealed state, and have the
various places in the code that deal with extending elements backing stores check the
extensible bit, or we could teach TurboFan about dictionary elements (actually both are
somewhat orthogonal and if necessary we could do both).

 Pros Cons
TurboFan dictionary
elements

●​ Easier to implement (local
change in TurboFan)

●​ Only recovers small
portion of the
performance
difference

●​ Even more places that
need to worry about
the hashing of integer
keys

Special elements kinds ●​ Maximum peak
performance

●​ Potential for even more
optimization (utilising the
immutability of the
elements)

●​ Easier to provide

●​ More work to
implement initially

●​ Adds more elements
kinds

https://v8.dev/blog/elements-kinds

consistent performance
(i.e. fast array iteration
builtins)

Implement special elements kinds (preferred solution)
As described in Elements kinds in V8, the V8 engine uses a concept called elements kinds to
optimize array backing stores. There are various fast elements kinds and there's the so-called
dictionary elements (called DICTIONARY_ELEMENTS inside of V8). Currently the fast elements
kinds all imply that the individual array indexed properties are all configurable, enumerable, and
writable, and on top of that, new elements can be added to the array (i.e.
Object.preventExtensions() wasn't called on that array).

Now we could add new elements kinds

●​ PACKED_SEALED_ELEMENTS,
●​ PACKED_FROZEN_ELEMENTS,
●​ HOLEY_SEALED_ELEMENTS, and
●​ HOLEY_FROZEN_ELEMENTS,

which would correspond to PACKED_ELEMENTS and HOLEY_ELEMENTS respectively, but with
the additional constraint that all elements are non-configurable (in case of SEALED) or also
non-writable (in case of FROZEN). In theory we could even add fine grained
PACKED_SEALED_SMI_ELEMENTS and PACKED_SEALED_DOUBLE_ELEMENTS (and same for
frozen and holey combinations), but that is probably too much complexity for the purpose of
what we're trying to accomplish here.

https://v8.dev/blog/elements-kinds
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions

We end up with the above transitions (and similar for the HOLEY_ELEMENTS). The interesting bit
here is that we might be able to leverage the fact that once the backing store is in
PACKED_FROZEN_ELEMENTS state, we know that there won't be any more elements transitions,
i.e. the backing store is not going to change. The same for PACKED_SEALED_ELEMENTS, where
it can only transition to PACKED_FROZEN_ELEMENTS state, and that wouldn't change the
backing store. In both cases we could also turn the backing store itself into copy-on-write mode
and easily share it and bake it directly into optimized code.

On top of that all builtins and code-paths that add new array elements would have to check the
is_extensible bit on the object shape to respect Object.preventExtensions() even if
the elements are in fast mode, before they can add more elements to the backing store.

Implementation considerations

CLs 1461166, 1474559, 1481895

We need to add performance tests to verify the improvements. A first set of tests was added in
1461166. We might need to add more later.

Then concrete action items are probably along the lines of:

1.​ We need a lot more correctness tests for this, since the current coverage doesn't even
catch basic mistakes.

a.​ Add more tests for non-extensible, sealed, frozen packed-elements object in
1481895, 1544274, 1531030

2.​ We might want to start with just treating PACKED_SEALED_ELEMENTS and
PACKED_FROZEN_ELEMENTS (and their HOLEY counterparts) like
DICTIONARY_ELEMENTS in CodeStubAssembler and TurboFan.

a.​ Just take the slow-path for them, potentially going to runtime. And then later
gradually allow fast-paths for the interesting cases.

3.​ We will likely need both HOLEY and PACKED support for frozen/sealed, otherwise this
will be a weird performance cliff.

Clever bit field encoding for the elements kinds

TBD

Teach TurboFan about dictionary elements (alternative solution)
Currently TurboFan and most of the Array builtins don't support DICTIONARY_ELEMENTS.
Instead those usually go through the generic code paths (i.e. the KeyedLoadIC), and involve a
bit of C++ code (to compute the hash for the integer key). We could inline some of this logic into
TurboFan for loading the value from the backing store once the hash code is computed, that

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/preventExtensions
https://chromium-review.googlesource.com/c/v8/v8/+/1461166
https://chromium-review.googlesource.com/c/v8/v8/+/1474559
https://chromium-review.googlesource.com/c/v8/v8/+/1481895
https://chromium-review.googlesource.com/c/v8/v8/+/1461166
https://chromium-review.googlesource.com/c/v8/v8/+/1481895
https://chromium-review.googlesource.com/c/v8/v8/+/1544274
https://chromium-review.googlesource.com/c/v8/v8/+/1531030

would allow us to at least perform some optimizations across these elements accesses. It'd
still be quite a bit slower than fast mode arrays.

	Fast frozen & sealed elements in V8
	Background
	Tagged templates
	Performance work-around
	TypeScript

	Freezing API objects
	FrozenArray in WebIDL

	Frozen objects and shape transitions (orthogonal)

	Performance impact
	Profiling peak performance

	Proposed solutions
	Implement special elements kinds (preferred solution)
	Implementation considerations
	Clever bit field encoding for the elements kinds

	Teach TurboFan about dictionary elements (alternative solution)

