Homework 10 Part 2: Prove diagonals of a parallelogram bisect each other Given: ABDC is a parallelogram Prove: The diagonals bisect each other $(\overline{EA} \cong \overline{ED})$ and $\overline{EB} \cong \overline{EC}$ Paragraph Proof We know that ABDC is a parallelogram because it is given. If the shape is a parallelogram, then we know \overline{AB} is parallel to \overline{CD} by the definition of a parallelogram. This lets us use special angles. Looking at \overline{CB} as a transversal of \overline{AB} and \overline{CD} , we can see that \angle ABC is congruent to \angle BCD because they are alternate interior angles. Similarly, looking at \overline{AD} as a transversal of \overline{AB} and \overline{CD} , we can see that \angle BAD is congruent to \angle CDA because they are alternate interior angles. So far we have two pairs of congruent angles, so I need a pair of congruent sides. I know that \overline{AB} and \overline{CD} are congruent because that is a property of parallelograms. Now I can use ASA congruence criteria to state that \triangle EAB is congruent to \triangle EDC. Finally, since \overline{EA} in \triangle EAB corresponds to \overline{ED} in \triangle EDC, and \overline{EB} in \triangle EAB corresponds to \overline{EC} in \triangle EDC, then \overline{EA} must be congruent to \overline{ED} and \overline{EB} must be congruent to \overline{EC} , because corresponding parts of congruent triangles are congruent. Q.E.D. | Statement | Reason | |-----------|--------| | 1. | | | 2. | | | 3. | | | 4. | | | 5. | | | 6. | | | 7. | | Given: ABDC is a parallelogram Prove: The diagonals bisect each other $(\overline{EA} \cong \overline{ED})$ and $\overline{EB} \cong \overline{EC}$