Green Algae

Phylum Chlorophyta

- photosynthetic (autotrophic)
- aquatic environments generally
- can be unicellular, colonial or multicellular
- lack vascular tissue (for transport of H2O and nutrients)
- rely on diffusion across cell membranes for distribution of materials in their tissues (limits size)

Distribution of Nutrients

Non-vascular transport.

Occurs in algae.

Diffusion of water and sugars occurs directly across the cell membrane

Examples of Different Types of Algae

- Unicellular
 - eg. Chlamydomonas
- Colonial
 - eg. Volvox
- Multicellular

eg. Ulva, Spirogyra, Oedogonium

Unicellular Algae

- Single celled plants
- eg. Chlamydomonas
 - grows in ponds and moist soil
 - small oval shaped cell with two whip like flagella
 - large cup shaped chloroplast
 - acts as a link in the evolution of multicellular plants and unicellular protists

Colonial Algae

- Group of cells that are joined together and show few specialised structures
- Each cell still functions independently
- eg. Volvox
 - forms large colonies
 - all the cells in the colony are connected by cytoplasmic strands
 - a few cells have specialised reproductive functions

Multicellular Algae

- Groups of cells working together, with individual cells having specialised functions
- Have cellulose in their cells walls
- Most complex algae
- eg. Ulva, Spirogyra, Oedogonium

Structures

lack stems, leaves and roots (terms reserved for vascular plants)

<u>HOLDFAST</u>: anchoring device
<u>BLADES</u>: leaf-like structures
STIPES: stem-like structures

Adaptations

- aquatic plants do not require some of the specialized structures for life on land
- no vascular tissue: water bathes plant in nutrients and carbon dioxide, plant relies on diffusion
- no support: plants float in water, no need for true stem (sometimes have floats)
- do not dry out: leaves can be thin and unprotected
- reproduction: motile reproductive cells swim through water
- large surface area to increase photosynthetic surface

Chlorophyll

Chlorophyll

- the light absorbing pigment for photosynthesis
- requires specific wavelengths of light
- seawater absorbs red and violet

Chlorophyll

Adaptations:

- algae have evolved to deal with the lack of red and violet light
- 1. different forms of chlorophyll which absorb different wavelengths of light

à examples: green algae (chlorophyll a and b), red algae (chlorophyll a and d), brown algae (chlorophyll a and c)

- 1. Accessory Pigments: absorb different wavelengths of light and pass energy on to photosynthetic machinery
- ** these 2 adaptations allow algae to survive in deeper water