
Task 6: Docker

Docker: Docker is a platform used to develop, ship, and run applications
inside lightweight, portable containers.

Docker Containers:

●​ A container is a lightweight, standalone, executable package of
software that includes everything needed to run an application: the
code, runtime, libraries, and dependencies.

●​ Containers are isolated from each other and the host system, which
makes them portable and easy to deploy on any environment.

●​ Unlike traditional virtual machines, containers do not require their own
OS. They share the OS kernel of the host system.

Docker Images:

Docker images are the blueprints or templates used to create Docker
containers. An image is a read-only file system that contains everything
needed to run an application, including the application code, libraries,
environment variables, dependencies, and configurations. When you run a
Docker image, it creates a container that can execute the application in
the isolated environment defined by the image.

●​ They are immutable.
●​ They are tagged.
●​ It consists of layers.

Layers of Docker Images:

1.​ Base Image:

This is the foundation of a Docker image, usually containing a
minimal operating system or file system. For example, a base image
might be an official Ubuntu, Alpine Linux, or Debian image.
Example: FROM ubuntu or FROM alpine
The base layer contains the essential files and directories needed to
run any software but doesn’t have any additional application-specific
software yet.

2.​ Layer of dependencies:

This layer contains the installation of libraries, packages, or other
dependencies needed by the application to function. It may include
system libraries, utilities, or application-specific libraries.
This layer is often created when you run commands like
 RUN apt-get install or RUN pip install in your
Dockerfile.
Example: Installing Node.js libraries or Python packages like
 RUN apt-get install -y python3.

3.​ Application Layer:

 This layer contains the application code or binaries that are being
packaged in the Docker image. It’s usually the part that is added or
copied into the container by commands like COPY or ADD.
Example: COPY . /app or ADD myapp.tar.gz /app

4.​ Configuration Layer:

 This layer is responsible for setting up environment variables,
configuration files, and any other adjustments to the container
environment.

Example: ENV NODE_ENV=production, RUN echo "myconfig"
> /app/config.txt

5.​ Runtime Layer:
 The executable layer typically includes the runtime environment and
binaries needed to execute the application. This can include things
like web servers (e.g., Nginx, Apache), databases, or other runtime
tools.
Example: RUN npm run build or CMD ["python", "app.py"]

6.​ Metadata Layer:
 This layer is used to store metadata, such as labels, author
information, and the default command to run when a container starts.
It helps define the behavior and characteristics of the image.
Example: LABEL version="1.0" or CMD ["npm", "start"]

How Layers Work:

●​ Each of these layers is created by a Dockerfile instruction (e.g., RUN,
COPY, ADD, CMD, etc.).

●​ Immutability: Once a layer is created, it is immutable and cached.
This allows Docker to reuse layers in future builds, improving
efficiency by not recreating layers that haven't changed.

●​ Layer Caching: Docker caches layers to speed up build times. If the
contents of a layer (such as a RUN command) don't change, Docker
will reuse the cached version of that layer in subsequent builds.

●​ Layer Ordering: The order in which layers are created is important.
Docker builds layers sequentially, so layers at the top of the

Dockerfile (like copying dependencies or installing packages) should
change less frequently than application-specific layers.

 Example of simple docker image:

Base image (layer 1)
FROM ubuntu:20.04

Install dependencies (layer 2)
RUN apt-get update && apt-get install -y curl

Set working directory (layer 3)
WORKDIR /app

Copy application code (layer 4)
COPY . .

Install application dependencies (layer 5)
RUN npm install

Set environment variables (layer 6)
ENV NODE_ENV production

Set the default command (layer 7)
CMD ["npm", "start"]

Docker Files:
 It is a text file that contains a series of instructions that define how to build
a Docker image. It provides a blueprint for the Docker image, specifying the
steps needed to set up the environment, install dependencies, copy files,
and configure the application inside the Docker container.

●​ Instructions: Each line in a Dockerfile contains a specific command
or instruction that tells Docker how to build the image.

●​ Automates Image Creation: By using a Dockerfile, you automate
the process of creating a Docker image, making it reproducible and
consistent.

●​ Customizable: You can specify everything from the base image to
the environment variables and even how to run your application in a
container.

Common Dockerfile Instructions:

1.​ FROM:
Specifies the base image for your Docker image. Every Dockerfile starts with this
instruction.

2.​ COPY:
Copies files or directories from your local machine (or build context) to the
Docker image.

3.​ ADD:
Similar to COPY, but also has the ability to extract tar files and fetch files from
URLs.

4.​ RUN:
Executes a command inside the image. It's commonly used to install software
dependencies or run setup commands.

5.​ WORKDIR:
Sets the working directory inside the container. This directory is where all
commands will be executed from.

6.​ CMD:
Specifies the default command to run when the container starts. There can only
be one CMD instruction in a Dockerfile, and it is executed when the container is
run.
Eg: CMD ["npm", "start"]

7.​ ENTRYPOINT:
Sets a default executable to run when the container starts. It works similarly to
CMD but has higher priority.

8.​ EXPOSE:
Informs Docker that the container will listen on a specific network port at runtime.
Eg: EXPOSE 8080

9.​ ENV:
Sets environment variables inside the container. These variables can be
accessed by applications running inside the container.

 Eg: ENV NODE_ENV=production

	How Layers Work:

