

Question 1
(a)
Finding a general purpose mapping could help us so that we can use networks which are easier
to reason about, and help problem understanding, and then map the developed algorithm onto a
different network, which may be more readily implemented.

We may also want to exploit algorithms that are optimized for frequency of link usage, and then
apply in them in any type of network.

(b)
Gray code mapping for 16 processors:

Gray code Row major index Mesh (x,y) pos Mesh to Gray Hypercube
index

0 0 | 0
0 1 | 1
1 1 | 2
1 0 | 3

0
1
2
3
4
5
6
7
8
9

(0,0)
(0,1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)
(1,3)
(2,0)
(2,1)

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 0
1 1 0 0
1 1 0 1

0
1
3
2
4
5
7
6
12
13

10
11
12
13
14
15

(2,2)
(2,3)
(3,0)
(3,1)
(3,2)
(3,3)

1 1 1 1
1 1 1 0
1 0 0 0
1 0 0 1
1 0 1 1
1 0 1 0

15
14
8
9
11
10

(i)
Because Gray codes convert the integer to a binary number which is shuffled due to the
mirroring that happens when creating them, 6 is mapped to 7.

(ii)
12 is mapped to 8.

(c)
(i)
This is challenging because connections, yo! Hypercube has log(n) connections per processor,
whereas 2D mesh always has four, so we run into problems for n > 16. Missing connections
therefore have to be compensated for by routing the original hypercube connection through
several mesh connections, resulting in different runtimes.

(ii)
The resulting mapping was said to be optimal, because the communication overhead from
mapping non-existing connections to routes was minimized: more frequently used connections
were laid closer together. This was accomplished by observing the recursive structure of the
bitonic mergesort algorithm, where each of the steps that generates the bitonic sequence is
composed of a similar operation found in the previous step, using the same connections for the
compare-swap/-split operation.

(a)
Pointer jumping for list ranking works by following the forward pointers of connected nodes to
increase the jump distance exponentially at each step. The ranks stored at each node are then
used to increase the rank of the current node.

Proce
ssor:

1 2 3 4 5 6 7 8 9 10

rank 1 1 1 1 1 1 1 1 1 0

jump: 2 3 4 5 6 7 8 9 10 -

new
rank:

2 2 2 2 2 2 2 2 1 0

jump: 3 4 5 6 7 8 9 10 - -

new
rank:

4 4 4 4 4 4 3 2 1 0

jump: 5 6 7 8 9 10 - - - -

new
rank:

8 8 7 6 5 4 3 2 1 0

jump: 9 10 - - - - - - - -

new
rank:

9 8 7 6 5 4 3 2 1 0

It’s applicable when we have at least a single linked list and each processor has the necessary
information about which element it belongs to before the algorithm starts, and n = p.

Runtime is log(n), cost is n*log(n)

(b)

Algorithm:

●​ Reverse the direction of the pointer
○​ Assume that every node has a parent pointer available
○​ Every node sets the parent pointer of it’s children to itself - run time of O(1)

●​ Use pointer jumping from each processor to move to parent until root is reached
○​ assume that each node holds it’s rank in a shared array or in some means that is

accessable from the others
○​ this will have run time of O(log d) where d is the largest depth of the tree.
○​ the run time depends on the structure of the tree.

Root can set its depth immediately. It then follows the pointers to its children and sets their
depth values as its value plus one. After every such step each processor checks whether its
depth value has been set, and then sets the values of its children. Since this is a binary tree,
setting the value of children is at most cost “2”, so the overall runtime is the same asymptotically

== depth of tree. If the tree is just a long “list”, this algorithm would have runtime O(n). If the tree
is balanced it would have runtime O(log(n)). This isn’t really pointer jumping tho, because we’re
not increasing the jump distance at each step.

c)
(i)
With less processors, the run time may not increase proportionally (i.e not n/p) since for this to
happen the processors would need to process the nodes in the order that they are present in

the list, but this is obviously unknown. So the worst case run time becomes O if all the (𝑛
𝑝)

2

nodes happen to be processed sequentially. The optimal run time would be (n/p) and in this
case each processor would have a part of the link list which itself is all linked and the processor
happens to process them in the inverse of their rank (the one that happened to have the
smallest rank first)

(ii)
With Message Passing, we either incur a high overhead to transmit the results after each
computation to update the values that any other processor has, or else we risk linear processing
through the local part of the list that the processor has. It will be a balance between increasing
computation time or increasing communication time.

(a)
(i)
A cost optimal solution is one which has the same cost as the best known sequential algorithm.
It is a desirable feature since cost optimal algorithms remain faster than sequential algorithms
even when scaled down.

(ii)
CRCW models cannot be implemented on real systems with the same complexity that they
originally had, since the hardware available would not support this. However EREW are easier
to implement, and may be implemented with the same complexity that the algorithm had for the
PRAM model.

(b)
Use prefix sum, output 1 for “(“ and -1 for “)”. If sum at any point < 0 we found a mismatch (and
sum needs to be 0 on final processor). See solution to question 1.c) in 2012 paper.

(c)
Can be scaled down cost optimally (with p = O(n/log(n))), just output the overall diff/count of
parentheses when each processor has n/p parts of the string.
In the n processor form it’s not cost optimal, because cost = O(nlog(n)), whereas sequential
case, cost = O(n)

