1. (a) Consider the problem of Inter-Model Emulation, that is, the creation of
general purpose mappings from the structure of one message-passing parallel
architecture into another. Explain in general terms why such mappings may
be useful, and the properties we would like them to have. [6 marks |

(b) In the Gray code based 2-D Mesh to Hypercube mapping discussed in the
course, processor 6 of a 16 processor row-major ordered square 2-D Mesh
maps to processor 7 of a 16 processor Hypercube.

i. Explain carefully why this is the case. [5 marks |
ii. Explain the corresponding mapping for square 2-D Mesh processor 12. [/ marks |

(c) Consider the Hypercube to 2-D Mesh emulation problem (i.e. the reverse of
the problem considered above).

i. Explain why this is a challenging problem as the number of processors
grows (NB you are not being asked to solve the problem). [3 marks |

ii. In the course, we examined a 2-D Mesh mapping of the Hypercube-based
Bitonic Mergesort algorithm. Explain the sense in which the resulting
algorithm can be said to be “optimal”, and describe the additional in-
formation which was exploited in achieving this successful mapping (NB
you are not being asked to define the mapping itself). [7 marks]

Question 1

(@)

6 (1,2) 0111 7

10 (2,2) 1111 15
11 (2,3) 1110 14
12 (3,0) 1000 8
13 (3,1) 1001 9
14 (3,2) 1011 11
15 (3,3) 1010 10

(i)
Because Gray codes convert the integer to a binary number which is shuffled due to the
mirroring that happens when creating them, 6 is mapped to 7.

(ii)
12 is mapped to 8.

(c)

(i)

This is challenging because connections, yo! Hypercube has log(n) connections per processor,
whereas 2D mesh always has four, so we run into problems for n > 16. Missing connections
therefore have to be compensated for by routing the original hypercube connection through
several mesh connections, resulting in different runtimes.

(i)

The resulting mapping was said to be optimal, because the communication overhead from
mapping non-existing connections to routes was minimized: more frequently used connections
were laid closer together. This was accomplished by observing the recursive structure of the
bitonic mergesort algorithm, where each of the steps that generates the bitonic sequence is
composed of a similar operation found in the previous step, using the same connections for the
compare-swap/-split operation.

2.

(a) With the help of a small example, describe the standard pointer-jumping
CREW PRAM algorithm for list ranking. Your answer should describe the
conditions under which the algorithm is applicable and state its run-time
and cost.

(b) Suppose that PRAM memory contains an array of n objects. As well as
various data fields, the objects each have two pointer fields, 1eft and right,
whose values have been set to describe an arrangement of the objects into
a binary tree (i.e. left points to an object’s left child, and right points to
its right child). An additional shared pointer root points to the tree’s root
object. The tree cannot be assumed to balanced. We would like to compute,
for each object, its depth within the tree, where the root has depth 0, its
children have depth 1, and so on. For example, for the tree below (in which
objects are identified by letters), the depths are A:0, B:1, C:1, D:2, E:2, F:2,

G:3, H:3.

Describe an n processor, pointer-jumping CREW PRAM algorithm for this

problem, and explain its run-time.

(c) Briefly discuss the challenges which would arise in adapting pointer-jumping
algorithms to work with

i. far fewer processors than objects, but still shared memory;

ii. far fewer processors than objects and non-shared memory.

[10 marks |

[10 marks |

[3 marks |
[2 marks |

(b)

Algorithm:
e Reverse the direction of the pointer
o Assume that every node has a parent pointer available
o Every node sets the parent pointer of it’s children to itself - run time of O(1)
e Use pointer jumping from each processor to move to parent until root is reached
o assume that each node holds it’s rank in a shared array or in some means that is
accessable from the others
this will have run time of O(log d) where d is the largest depth of the tree.
the run time depends on the structure of the tree.

c)

(i)

With less processors, the run time may not increase proportionally (i.e not n/p) since for this to
happen the processors would need to process the nodes in the order that they are present in

2
the list, but this is obviously unknown. So the worst case run time becomes O (%) if all the

nodes happen to be processed sequentially. The optimal run time would be (n/p) and in this
case each processor would have a part of the link list which itself is all linked and the processor
happens to process them in the inverse of their rank (the one that happened to have the
smallest rank first)

(ii)

With Message Passing, we either incur a high overhead to transmit the results after each
computation to update the values that any other processor has, or else we risk linear processing
through the local part of the list that the processor has. It will be a balance between increasing
computation time or increasing communication time.

3. (a) 1. Define cost-optimality and explain why it is a desirable property for
PRAM algorithms. (3 marks |

ii. You are in charge of a shared-memory parallel programming project.

You have employed a PRAM algorithms expert as part of the team. For

some new problem, the expert offers you an asymptotically cost-optimal

algorithm for the CRCW-associative PRAM, and an asymptotically non

cost-optimal algorithm for the EREW PRAM. Explain why the EREW

algorithm might nevertheless be the better choice for your project. (5 marks |

(b) An array in PRAM shared memory stores a sequence of n characters. You
are to design a CREW PRAM algorithm which checks whether the sequence
is correctly parenthesised, meaning that occurrences of the characters “(”
and “)” are correctly matched and nested. For example, with “X” standing
for any characters other than “(” or “)”, the sequences

RXX X QOXX (XXX XX, “XXOX((X))” and “(XXDXO”
are correctly parenthesised, whereas
COXX(XX?, “XX) (X) (” and “XX(X)X) (X"

are not. More precisely, a sequence is correctly parenthesised if, for every
“(”, there is a matching “)” further along the sequence, and the sequence
between these two occurrences is also correctly parenthesised. A sequence
with no parentheses at all is defined to be correctly parenthesised.

Give a clear description of your algorithm and a clear explanation of its
run-time. You may find it helpful to use small examples, but you should be
careful to ensure that your description covers all situations. You may re-use
any algorithm presented in the course without the need for further detailed
explanation. You should aim for an algorithm which runs in O(log n) time
on n Processors. [12 marks |

(c) Discuss the cost-optimality and scalability of your algorithm. (5 marks |

(a)

(i)

A cost optimal solution is one which has the same cost as the best known sequential algorithm.
It is a desirable feature since cost optimal algorithms remain faster than sequential algorithms
even when scaled down.

(ii)

CRCW models cannot be implemented on real systems with the same complexity that they
originally had, since the hardware available would not support this. However EREW are easier
to implement, and may be implemented with the same complexity that the algorithm had for the
PRAM model.

(b)
Use prefix sum, output 1 for “(* and -1 for “)”. If sum at any point < 0 we found a mismatch (and
sum needs to be 0 on final processor). See solution to question 1.c) in 2012 paper.

(c)

Can be scaled down cost optimally (with p = O(n/log(n))), just output the overall diff/count of
parentheses when each processor has n/p parts of the string.

In the n processor form it’s not cost optimal, because cost = O(nlog(n)), whereas sequential
case, cost = O(n)

