This document follows a discussion that happened on the prometheus-dev mailing list regarding
the current Cl infrastructure.

Current situation

The Prometheus organization uses currently 2 different systems for Cl: Circle Cl and Travis CI.
Some repositories use none (docs for instance), others use only one and the rest uses both.

The main drawback of having 2 systems in place is the increased maintenance burden and the
cognitive load. In the last months we had to deal with:
e Circle CI configuration migration from 1.0 to 2.0.
e GitHub Services being deprecated and replaced by GitHub Apps which Travis Cl doesn’t
fully support yet.

Historically Circle Cl had been introduced because Travis Cl wasn’t able to push images to
Docker. This isn’t the case anymore which is why it may be the right time to revisit the situation.

Travis ClI
Used for:
e Running unit tests. It supports testing with multiple Go versions (used by client_golang)
in parallel.
Not used by:
e node_exporter
e busybox
e golang-builder
e memcached_exporter

Current plan:

Free
2 vCPUs / 4GB RAM (see
https://docs.travis-ci.com/user/reference/overview/#virtualisation-environment-vs-operati

ng-system)

We get up to 2 vCPUs and 8GB or RAM at no additional cost.


https://groups.google.com/d/msg/prometheus-developers/kfOlWyU4_ek/2EVoE8a8AAAJ
https://docs.travis-ci.com/user/docker/
https://docs.travis-ci.com/user/reference/overview/#virtualisation-environment-vs-operating-system
https://docs.travis-ci.com/user/reference/overview/#virtualisation-environment-vs-operating-system

Known limitations:

o No-suppertfor-Windews: Windows support is available for early access since the end of
September 2018, see https://travis-ci.community/t/windows-early-release/195.

e No support for storing build artifacts on forked PRs unlike CircleCl. One can upload build
artifacts to S3 for instance but for security reasons, S3 credentials (or any other type of
credentials) aren’t accessible to forked PRs.

Circle ClI

Used for:

Running unit tests.

Build tarball releases for multiple architectures.

Publish releases.

Publish container images on docker.io and quay.io (both for master and tagged
releases).

Not used by:

client_golang

client_java

client_ruby

client_python
cloudwatch_exporter
common

tsdb
prometheus_api_client_ruby

Current plan:

free
15 containers
2 vCPUs / 4GB RAM (see

https://circleci.com/docs/2.0/configuration-reference/#resource_class)

With a paid plan, we could get up to 8 vCPUs and 16GB of RAM.

Known limitations:

e |t can’t run the tests on Prometheus because it exhausts the resources (OOM).
e No support for Windows.


https://travis-ci.community/t/windows-early-release/195
https://circleci.com/docs/2.0/configuration-reference/#resource_class
https://github.com/prometheus/prometheus/pull/4233

e Cannot trigger a build for an open PR with custom parameters (use case: push a
container image before the PR is merged for testing). Note that it wouldn’t be
recommended as it could potentially leak encrypted/hidden data (such as credentials) to
external contributors (see Travis documentation but the same applies to CircleCl).

BuildKite

Used for:

e node_exporter
e Non-x86 and Non-Linux native testing.

Current plan:

e Free Packet.net bare-metal server.
e Running on ansible-built VMs.

Known limitations:

What other projects use?

Most of the CNCF projects use Travis Cl minus Kubernetes (self hosted) and Envoy
(https://github.com/envoyproxy/envoy/pull/2224, using CircleCl with xlarge resources with paid
plan from CNCF).

Notable users of CircleCl are Envoy, Grafana (they ditched Travis too) and Istio.

Alternatives

Statu-quo

Pros:
e Not tied to a single platform. In case one of them has an outage, goes out of business or
changes its plan, there’s a backup solution.
Cons:
e Maintenance burden.


https://docs.travis-ci.com/user/pull-requests/#pull-requests-and-security-restrictions
https://github.com/envoyproxy/envoy/pull/2224
https://github.com/envoyproxy/envoy/blob/00ffe44a2951321e8a1ad2e54fd4e014c059f70c/.circleci/config.yml#L10

Use Travis Cl only

Pros:
e No showstopper identified. It seems to support what we have currently for releasing
binaries and images.
Cons:
e Not clear whether the hardware specs can be increased, even with a paid plan.
e |t would require to update and test all the projects with the release jobs.

Use Circle Cl only

Pros:
e Less work than to replace it with Travis CI.
Cons:
e Resource limitations would probably require a paid plan (which can probably be
sponsored by the CNCF).

Select one Cl on per-project basis

Projects that are only using Travis Cl will continue to do so. Projects using both systems will
switch to CircleCl only.
Pros:
e Minimal efforts.
Cons:
e Both systems still have to be supported but on a smaller surface.

CNCF ClI

There is a group in the CNCF org working on CI. Currently it builds the latest stable and master
release of Prometheus (but not AlertManager, node_exporter and other which are taken from
Docker Hub) then deploys everything to various cloud providers on top of Kubernetes. The
whole process runs on a daily basis.

See also https://cncf.ci/

OpenLab

OpenLab is an initiative originating from the OpenStack community which provides Cl services
for various projects more or less related to the OpenStack ecosystem (for instance gophercloud,
the Go client library for OpenStack and cloud-provider-openstack). It is available for any open



https://github.com/cncf/wg-ci/
https://cncf.ci/
http://openlabtesting.org/
https://github.com/gophercloud/gophercloud
https://github.com/kubernetes/cloud-provider-openstack

source project that wants to run unit and/or integration tests. Compute resources are offered by
cloud providers and shared across projects.

Technically the solution is based on Zuul + Ansible playbooks.

It could be interesting to use it for testing the OpenStack SD mechanism: OpenLab provides
ready-to-use playbooks that can deploy an OpenStack cloud in a box.

Roll our own CI system

There have been discussions about having self-hosted ClI in the context of the Prometheus
benchmarks.

Pros:
e We control everything.
Cons:
e Need to build and maintain, this isn’t sustainable for the team.

Questions

Support for more hardware platforms?
o Travis Cl and CircleCl support Linux and OSX. Travis supports Windows too (as
of Oct 2018).
m https://circleci.com/docs/2.0/testing-ios/
m https://docs.travis-ci.com/user/multi-os/
Take into account the future prometheus-community effort?
Crossbuilds on CircleCl are slow but this is more a limitation of promu than CircleCl
itself.
e Multi-arch container images has been asked too

(https://github.com/prometheus/promu/issues/89). Is any solution more suited at this?



https://zuul-ci.org/
https://docs.google.com/document/d/1aCGHS0hOrh3LiQLuOa1EWA6knF7HmqWbhp3ev66hB7Y/edit#heading=h.d3mp7rw9djnu
https://circleci.com/docs/2.0/testing-ios/
https://docs.travis-ci.com/user/multi-os/
https://github.com/prometheus/promu/issues/89

	Current situation 
	Travis CI 
	Used for: 
	Not used by: 
	Current plan: 
	Known limitations: 

	Circle CI 
	Used for: 
	Not used by: 
	Current plan: 
	Known limitations: 

	BuildKite 
	Used for: 
	Current plan: 
	Known limitations: 

	What other projects use? 

	Alternatives 
	Statu-quo 
	Use Travis CI only 
	Use Circle CI only 
	Select one CI on per-project basis 
	CNCF CI 
	OpenLab 
	Roll our own CI system 

	Questions 

