
Illustrative OS-A-SEE Specification
v7, Andrei Warkentin, Intel Corporation

This document is heavily inspired by the Arm (R) DEN0044G Base Boot Requirements 2.0
Platform Design Document, and is meant to fuel further discourse. The reason why the BBR is
taken as a base is because to date it represents the single authoritative effort to describe the
booting requirements congruent with industry norms for building servers and PC-like systems,
and because it additionally accommodates requirements for building embedded-style systems.
There's a lot of trial-by-fire knowledge accumulated and refined there, that we should build on.
Also takes into account:

●​ RISC-V ACPI Guidance document
o​ riscv-acpi/riscv-acpi-guidance.adoc at master · riscv-non-isa/riscv-acpi · GitHub

●​ EBBR specification
o​ https://arm-software.github.io/ebbr/

Parts of the document with XXX signify gaps in specifications that need to be addressed.
Notable gaps:

●​ Narrative text should/need to/ought to be rewritten instead of being (in many places)
taken verbatim from the BBR doc. The “SANITIZED UP TO” comment will be used as a
marker of progress.​
UEFI calling conventions for RISC-V need to be fixed to not be so restrictive about how
an implementation works and what mode it starts in
(https://bugzilla.tianocore.org/show_bug.cgi?id=4232)

●​ ACPI RISC-V FFH spec (XXX: link to WIP work)
o​ E.g. for LPI, CPPC
o​ For SBI ecall-backed OperationRegions

●​ Arm SDEI-like spec, or similar NMI-like mechanism (needed for signaling fatal APEI
errors)

●​ APEI RISC-V definitions (CPER)
●​ ACPI table for IOMMU (obviously dependent on IOMMU). This is not a blocker -

IOMMU-related content can be hidden until a revision of the spec that appears once the
IOMMU side of things is ratified
(https://github.com/riscv-non-isa/riscv-acpi/blob/master/rimt.adoc)

●​ Need a separate RVI doc to provide a “solar-system-at-a-glance” view of how HW/FW
specs compose towards a solution.

●​ Need more “official” review from various OSVs and participation in the OS-A-SEE.

 Areas of difference from the BBR:

●​ Covers (or doesn't preclude) virtual machine environments
●​ Doesn't include the LBBR-like recipes
●​ Fleshes out UEFI required / optional boot protocols

o​ This list is meant to cover protocols used by known OS first stage loaders

https://github.com/riscv-non-isa/riscv-acpi/blob/master/riscv-acpi-guidance.adoc
https://arm-software.github.io/ebbr/

o​ The BBR list is missing block I/O protocols, PCIe protocols
●​ Adds references to more ACPI tables: NBFT alongside IBFT, TPM2

Changelog

Version Changes

v7 Clarified MADT entries (can have IMSICs only, IMSICs + APLICs, 1 APLIC or 1
PLIC)

v6

Applies feedback from Canonical
●​ Make chapter 8 relevant to VI, but don’t provide overlapping requirements for

VI.
●​ Adjusted description of UEFI memory map
●​ Make DBG2 optional
●​ Reworded use of VA (virtual address) in text around capsule update.

Fixed some formatting/missing text issues.

v5

Applies feedback from Ventana.

●​ Reference the WIP Type44 SMBIOS structure.
●​ References UEFI Boot Protocol spec.
●​ APLIC is optional.
●​ GICC → RINTC

Applies feedback from Canonical.

●​ Reference SBI 1.0 spec.
●​ Require SBI HSM for secondary core boot.
●​ Clarify that ACPI is mandatory only for HI. DTB is mandatory for VI. Clarify

that exposing DT and ACPI at the same time is disallowed.
●​ Mark SMBIOS Type03 as optional.
●​ Refine definition of socket for Type04 to include certain chiplet scenarios
●​ Move ESRT under conditionally-required tables.

Applies feedback from VMware

●​ TAD language to allow operation if a dependency is not present (e.g. OS driver
for I2C/SPI bus)

v4

Applies feedback received from VMware.

●​ Replace IORT references with XXX
●​ Clarify use of RT service for system reset over SBI, instead of allowing either to

be used. Allowing either to be used is a compromise that had to be made in
SystemReady to accomodate existing OS behavior. Consequently relax the
UEFI RT implementation to allow non-SBI based implementations.

●​ Because of clarifications around use of EFI ResetSystem(), relax language
around how variable services could be implemented, which allows persistent
variable support even on systems where these could be stored on OS-visible
secondary storage.

●​ Clarify CPU Performance Control to only rely on _CPC (as per CPPC)
●​ Clarify how RTC is exposed

o​ If RTC is on an OS-managed bus (e.g. I2C, where the OS can access the
bus for any reason, such as other devices), the RTC must be exposed via
TAD.

o​ If the RTC is not on an OS-managed bus (i.e. not subject to any
arbitration issues between concurrent OS and UEFI accesses to the
underlying hardware) the RTC must be exposed via UEFI RT services.

●​ Add references to EFI_CONFORMANCE_TABLE and
EFI_RT_PROPERTIES_TABLE

v1/v2/v3 Original with minor typo fixes, add conformance profile info.

Illustrative OS-A-SEE Specification

1. About this Document
1.1. References

1.1.1. Cross References
1.2. Terms and Abbreviations

2. Background

3. Introduction

4. Recipes
4.1. OS-A-SEE-HI (Horizontally-Integrated) Recipe
4.2. OS-A-SEE-VI (Vertically-Integrated) Recipe

5. RISC-V Processor Requirements

6. SBI Requirements

7. Secondary Core Boot

8. UEFI Requirements
8.1. UEFI Version

8.2. UEFI Compliance
8.3. UEFI System Environment and Configuration

8.3.1. Privilege Levels
8.3.1.1. UEFI boot in HS-Mode
8.3.1.2. UEFI boot in (V)S-Mode

8.3.2. System Volume Format
8.3.3. UEFI Image Format

8.3.3.1. UEFI drivers
8.3.3.2. UEFI applications
8.3.3.3. PE/COFF image

8.3.4. GOP protocol
8.3.5. Address translation support

8.4. UEFI Boot Services
8.4.1. Memory map
8.4.2. UEFI loaded images
8.4.3. Configuration tables

8.5. UEFI Runtime Services
8.5.1. Runtime Exception Level
8.5.2. Runtime Memory Map
8.5.3. Real-time Clock
8.5.4. UEFI Reset and Shutdown
8.5.5. Set variable

8.6. Firmware Update

9. ACPI Requirements
9.1. ACPI Version
9.2. ACPI Provided Data Structures
9.3. ACPI Tables

9.3.1. Mandatory ACPI Tables
9.3.1.1. RSDP
9.3.1.2. XSDT
9.3.1.3. FADT
9.3.1.4. DSDT and SSDT
9.3.1.5. MADT
9.3.1.6. RHCT
9.3.1.8. SPCR
9.3.1.9. MCFG
9.3.1.10. PPTT

9.3.2. Recommended ACPI Tables

9.3.3. Optional ACPI Tables
9.4. ACPI Definition Blocks
9.5. ACPI Methods and Objects

9.5.1. Global Methods and Objects
9.5.2. Device Methods and Objects
9.5.3. GPIO Controllers
9.5.4. Generic Event Devices
9.5.5. Address Translation Support

9.6. Hardware Requirements Imposed by ACPI
9.6.1. Process Performance Control
9.6.2. Time and Alarm Device

10. SMBIOS Requirements
10.1. SMBIOS Version

10.1.1. SMBIOS Requirements on UEFI
10.2. SMBIOS Structures

10.2.1. Type00: BIOS Information (Required)
10.2.2. Type01: System Information (Required)
10.2.3. Type02: Baseboard (or Module) Information (Recommended)
10.2.4. Type03: System Enclosure or Chassis (Recommended)
10.2.5. Type04: Processor Information (Required)
10.2.6. Type07: Cache Information (Required)
10.2.7. Type08: Port Connector Information (Recommended for Platforms with Physical
Ports)
10.2.8. Type09: System Slots (Required for Platforms with Expansion Slots)
10.2.9. Type11: OEM Strings (recommended)
10.2.10. Type13: BIOS Language Information (Recommended)
10.2.11. Type14: Group Associations (Recommended for Platforms To Describe
Associations Between SMBIOS Types)
10.2.12. Type16: Physical Memory Array (Required)
10.2.13. Type17: Memory Device (Required)
10.2.14. Type19: Memory Array Mapped Address (Required)
10.2.15. Type32: System Boot Information (Required)
10.2.16. Type38: IPMI Device Information (Required for Platforms with IPMIv1.0 BMC
Host Interface)
10.2.17. Type39: System Power Supplies (Recommended for Servers)
10.2.18. Type41: Onboard Devices Extended Information (Recommended)
10.2.19. Type42: Redfish Host Interface (Required for Platforms Supporting Redfish
Host Interface [16])

10.2.20. Type42: TPM Device (Required for Platforms with a TPM)
10.2.21. Type44: Standard Processor Additional Information (Required)
10.2.22. Type45: Firmware Inventory Information (Recommended)
10.2.23. Type46: String Property (Recommended)

Appendices
Appendix A: Required UEFI Boot Services
Appendix B: Required UEFI Runtime Services
Appendix C: Required UEFI Configuration Table Entries
Appendix D: Optional and Conditionally Required UEFI Configuration Table Entries
Appendix E: Required UEFI Protocols

E.1 Core UEFI Protocols
E.2 Media I/O Protocols
E.3 Console Protocols
E.4 Driver Configuration Protocols
E.5 Random Number Generator Protocols
E.6 RISC-V Protocols

Appendix F: Optional and Conditionally Required UEFI Protocols
F.1 Basic Networking Support
F.2 Network Boot Protocols
F.3 IPv4 Network Support
F.4 IPv6 Networking Support
F.5 VLAN Protocols
F.6 iSCSI Protocols
F.7 REST Protocols
F.8 HTTP Network Protocols
F.9 Firmware Update
F.10 CXL UEFI Protocols
F.11 PCIe UEFI Protocols
F.12 Graphics Protocols

G Recommended and Conditionally Required ACPI Tables
G.1 I/O Topology
G.2 TPM
G.3 Platform Error Interfaces
G.4 NUMA
G.5 PCC
G.6 Platform Debug Trigger
G.7 NVDIMM Firmware Interface
G.8 Graphics Resource Table

G.9 IPMI
G.10 CXL
G.11 iSCSI and NVMe-oF

G.12 DBG2
Appendix H: Recommended and Conditionally Required ACPI Methods

H.1 CPU Performance Control
H.2 CPU and System Idle Control
H.3 NUMA
H.4 IPMI
H.5 Device Configuration and Control
H.6 Resources
H.7 CXL
H.8 Time and Alarm
H.9 PCI and PCIe

Appendix I: CXL Requirements
I.1 CXL Host Bridge
I.2 CXL Root Device

I.2.1 ACPI Device Object for CXL Root Device
I.3 NUMA

1. About this Document

1.1. References

This document refers to the following documents:

Reference Doc # Authors Title

[1] ACPI UEFI.org Advanced Configuration and Power Interface
Specification. Revision 6.6.

[2] v1.0.0 RVI RISC-V Supervisor Binary Interface
Specification

[3] v1.0.0 RVI RISC-V UEFI Protocol Specification

[13] v1.3 TCG TCG ACPI Specification

[14] CDAT UEFI.org Coherent Device Attribute Table (CDAT)
Specification

[15] CXL CXL
Consortium

Compute Express Link (CXL) Specification
2.0, and published ECNs and Errata

[16] DMTF DSP0270 DMTF Redfish Host Interface Specification Version
1.2.0

[17]
_DSD
Implementation
Guide

UEFI.org _DSD (Device Specific Data)
Implementation Guide

[18] DT Devicetree.org Devicetree Specification 0.3

[19] EBBR Arm Embedded Base Boot Requirements 2.0.1

[20] WEG SMBIOS Microsoft Firmware Windows Engineering Guide

[21] IPMI Dell, HP, Intel,
NEC

Intelligent Platform Management Interface
2.0, Revision 1.1 (October 2013)

[22] OCP OSF
Checklist OCP OCP Open System Firmware Checklist v1.0

[23] PCI FW PCI SIG
PCI Firmware Specification Revision 3.3,
and published ECNs and Errata, e.g., TPH
ECN

[24] SMBIOS DMTF System Management BIOS (SMBIOS)
Reference Specification Version XXX

[25] UEFI UEFI.org Unified Extensible Firmware Interface
Specification. Version 2.9

1.1.1. Cross References

This document cross-references sources that are listed in the References section by using the
section sign §. Examples:

ACPI § 5.6.5 Reference to the ACPI specification [1] section 5.6.6

UEFI § 6.1 Reference to the UEFI specification [25] section 6.1

1.2. Terms and Abbreviations

This document uses the following terms and abbreviations.​

Term Meaning

ACPI Advanced Configuration and Power Interface

BMC Baseboard Management Controller

DT DeviceTree

EFI Loaded
Image

An executable image to be run under the UEFI environment, and which
uses UEFI Boot Services and UEFI Runtime Services

Hart Hardware thread in RISC-V. This is the hardware execution context that
contains all the state mandated by the ISA.

HS-Mode Hypervisor-extended-supervisor mode which virtualization the supervisor
mode

HSM Hart State Management (HSM) is an SBI extension, that enables the
supervisor mode software to implement ordered booting

HDM Host-managed Device Memory, such as CXL attached memory

M-Mode Machine-mode is the most secure and privileged mode in RISC-V

OEM Original Equipment Manufacturer. In this document, the final device
manufacturer.

RISC-V An open standard Instruction Set Architecture (ISA) based on Reduced
Instruction Set Architecture (RISC)

RV64 64-bit execution mode in RISC-V

RVI RISC-V International

SEE Supervisor Execution Environment. Not to be confused with OS-A SEE,
this is formed by components running in M-Mode or HS-Mode

SBI RISC-V Supervisor Binary Interface. This is an interface between SEE and
S-Mode software

OS-A SEE OS-A Supervisor Execution Environment Specification

SiP Silicon Partner. In this document, the silicon manufacturer

S-Mode Supervisor-mode, reserved for OS kernels

VS-Mode Virtualized supervisor mode where the guest OS is expected to run when
hypervisor is enabled.

SMBIOS System Management BIOS

UEFI Unified Extensible Firmware Interface.

UEFI Boot
Services

Functionality that is provided to UEFI Loaded Images during the UEFI
boot process.

UEFI Runtime
Services

Functionality that is provided to UEFI Loaded Images during the UEFI
boot process and to an operating system after the ExitBootServices() UEFI
Boot Service call.

2. Background

RISC-V cores are used in a wide variety of products in many diverse markets. The constraints on
products in these markets are inevitably very different. This means that it is impossible to
produce a single product that meets the needs of the various markets.
​
The RISC-V architecture profiles segment RISC-V-based solutions and align with​
the functional requirements of different target markets. The differences between products that are
targeted at different profiles are substantial. These differences reflect the diverse functional
requirements of the market segments.

However, even within an architectural profile, the wide-ranging use of a product means that there
are frequent requests for features to be removed to save silicon area. This is relevant for products
that are targeted at cost sensitive markets. In these markets, the cost of customizing software to
accommodate the loss of a feature is small, compared to the overall cost saving of removing the
feature itself.

<insert here bit about RISC-V's extensibility>

In other markets, like those which require an open platform with complex software, the cost of
software development to support the different variants of a hardware feature outweighs the
savings that are gained from removing the variation. In addition, third parties often perform
software development. The uncertainty about whether new features are widely deployed can be a
substantial obstacle to the adoption of those features.

RISC-V cores are built into a large variety of systems. Aspects of this system functionality are
crucial to the fundamental function of system software. Variability in boot models and certain
key aspects of the system has a direct impact on the cost of software system development and the
associated quality risks.

The OS-A Supervisor Execution Environment (OS-A SEE) is part of the RVI strategy of
addressing this variability.

3. Introduction

This document specifies the OS-A Supervisor Execution Environment (OS-A SEE) requirements
for Boot and Runtime Services, that system software, for example operating systems and
hypervisors, can rely on. This specification targets 64-bit RISC-V processors capable of running
typical ("general purpose") operating systems and hypervisors.

The primary goal of this document is to ensure sufficient standard system architecture to enable a
suitably built single OS image to run on all hardware that is compliant with this specification. A
driver-based model for advanced platform capabilities beyond basic system configuration and
boot is required. However, this model is beyond the scope of this document. Fully discoverable
and describable peripherals aid the implementation of this type of a driver model.

This document identifies the RVI and industry standard firmware interfaces applicable. They
include the SBI, UEFI, ACPI, SMBIOS, and DT interfaces. Requirements that are based on these
interfaces are specified. In addition, various recipes are created to accommodate the target
market segments, products, operating systems and hypervisors.

RVI does not require compliance to this specification. RVI anticipates that Cloud Service
Providers (CSPs), OEMs, ODMs, and software providers will require compliance to maximize
out of box software compatibility and reliability.

Implementations that are consistent with the OS-A SEE can include other features that are not
included in the definition of OS-A SEE. However, software that is written for a specific version
of OS-A SEE must run, unaltered, on implementations that include this type of extra
functionality.

4. Recipes

This section provides recipes to accommodate various operating systems and hypervisors. It is
expected that these operating system and hypervisor requirements will be largely driven by target
market segments. The HI (Horizontally Integrated) recipe is most appropriate for building
solutions combining components (hardware, software, off-the-self) from multiple providers and
with a focus on interoperability. Examples of such solutions include server and client devices.
The VI (Vertically Integrated) recipe is appropriate for solutions where all facets (hardware,
software) are driven end-to-end by a single provider. Examples of such solutions include
embedded systems and cloud servers. The application of a recipe to a product/segment is a
recommendation, not a requirement.

These recipes define the Boot and Runtime Services for a physical or virtual machine system,
including services that are required for virtualization.

4.1. OS-A-SEE-HI (Horizontally-Integrated) Recipe

Systems using OS-A-SEE-HI recipe must meet the requirements that are specified in 5. RISC-V
Processor Requirements, 6. SBI Requirements, 7. Secondary Core Boot, 8. UEFI Requirements,
9. ACPI Requirements, and 10. SMBIOS Requirements.

Currently, XXX operating systems require OS-A-SEE-HI recipe. Other operating systems, for
example XXX can also support OS-A-SEE-HI. This list of operating systems and hypervisors is
subject to change.

Note: The reference implementation that is provided at tianocore.org is called EDK2. However,
OS-A-SEE-HI compliance does not require EDK2 implementation

4.2. OS-A-SEE-VI (Vertically-Integrated) Recipe

Systems using OS-A-SEE-VI recipe must meet the requirements that are specified in 5. RISC-V
Processor Requirements, 6. SBI Requirements, 8. UEFI Requirements) and in the EBBR
specification v2.0.1[19].

Note: The EBBR specification defines a reduced UEFI environment. The underlying
implementation of EBBR specification is typically U-Boot. However, EBBR does not preclude
EDK2 implementation.

Note: Currently, XXX operating systems support OS-A-SEE-VI. This list of operating systems
and hypervisors is subject to change.

5. RISC-V Processor Requirements

This specification is minimally proscriptive on the RISC-V processor requirements. It is
anticipated that such detailed requirements will be largely driven by target market segment and
product/solution requirements. The SEE mandates the minimal set required for a compliant
implementation of the SEE alone.

The SEE requires processor cores to be at least compliant to:

●​ RVA20S64, as OS-A-SEE governs the interactions between 64-bit OS supervisor-mode
software and 64-bit firmware.

●​ Sm1p11 or hypervisor extension, to sustain SEE components interfaced via SBI.

These are minimum requirements, allowing for the wide variety of existing and future processor
implementations to be supported with OS-A-SEE. It is expected that operating systems and
hypervisors may impose additional profile/ISA requirements, depending on the use-case and
application.

6. SBI Requirements

The resident firmware in M mode or HS-mode must implement and conform to at least SBI [2]
v1.0.0.

●​ All mandatory functions must be implemented.
●​ Optional functions are recommended to be implemented.

The following extensions are mandatory:

http://tianocore.org

●​ HSM (Hart State Management)
●​ System Reset Extension

7. Secondary Core Boot

The SBI HSM extension is the only mechanism for booting secondary cores, implementing CPU
idling, and providing reset and shutdown runtime services.

Where CPU idling low power states are provided, the DSDT must provide _LPI objects.
Secondary cores can be brought online for specific tasks by calling sbi_hart_start into SBI. A
secondary core brought online by firmware services before OS load must be put offline again by
calling sbi_hart_stop into SBI to force the cores into OS compatible state before handing off
control to OS.

If the cores are being manipulated internally to a UEFI implementation, this should happen
before completing the EFI_EVENT_GROUP_READY_TO_BOOT event. After boot, an OS can
call sbi_hart_start to start a chosen secondary core.

8. UEFI Requirements

8.1. UEFI Version

This document references the following specification and versions:

●​ UEFI 2.10 [25] Published August 2022, includes the RISC-V bindings.
●​ RISC-V UEFI PROTOCOL Specification, v1.0.0

8.2. UEFI Compliance

Any UEFI-compliant system must follow the requirements that are laid out in section 2.6 of the
UEFI specification. Systems that are compliant with this section must always provide the UEFI
services and protocols that are listed in Appendix A, Appendix B, and Appendix C of this
document, and in the RISC-V UEFI Protocol Specification [3].

UEFI Protocols that are optional are listed in Appendix D. Not every platform that is compliant
with this specification provides all of these protocols. This is because many protocols reference
optional platform features. For example, a platform does not have to implement the UEFI
networking protocols unless the platform supports booting the OS from the network. If the
platform supports OS booting from the network, then the appropriate network boot technology
protocols (PXE, HTTP(s), and/or iSCSI) must be implemented.

8.3. UEFI System Environment and Configuration

The resident RISC-V UEFI boot-time environment is specified to use the highest 64-bit
non-M-mode available. This level is either S-Mode, VS-Mode, or HS-Mode, depending on
whether virtualization is used or supported.

8.3.1. Privilege Levels

Resident UEFI firmware might target a specific privilege level. In contrast, UEFI loaded image
drivers and boot applications, must not contain any built-in assumptions of the privilege level at
boot time. This is because these UEFI loaded images can be loaded into (V)S-Mode or
HS-Mode.

As an implementation choice, UEFI firmware may start execution in M-Mode. However, it must
switch to the highest non-M-mode implemented before starting up EFI drivers or applications.

8.3.1.1. UEFI boot in HS-Mode

Systems must boot UEFI in HS-Mode, to allow for the installation of a hypervisor or a
virtualization-aware operating system.

8.3.1.2. UEFI boot in (V)S-Mode

Booting of UEFI at (V)S-Mode is only permitted in the following distinct conditions:

●​ on systems that do not implement HS-Mode.
●​ within a virtual machine environment, to allow the subsequent booting of a

UEFI-compliant operating system. In this instance, the UEFI boot-time environment can
be provided as a virtualized service by the hypervisor, and not part of the host firmware.

8.3.2. System Volume Format

The system firmware must support the disk partitioning schemes that are required by the UEFI
specification [UEFI § 2.6.2][UEFI § 13.3.1]

8.3.3. UEFI Image Format

UEFI allows the extension of platform firmware, by loading UEFI driver and UEFI application
images [UEFI § 2.1]

8.3.3.1. UEFI drivers

A device may provide a container for one or more UEFI drivers [UEFI § 2.1.4] that are used for
the device initialization. If a platform supports the inclusion or addition of such a device, at least
one of the UEFI drivers must be in the RV64 binary format.

8.3.3.2. UEFI applications

A UEFI application [UEFI § 2.1.2] must be in the RV64 binary format to be used for the systems
that comply with this specification.

8.3.3.3. PE/COFF image

The SectionAlignment and FileAlignment fields, as defined in Microsoft PE Format, must
contain the value of at least 4KiB. Higher values are also permitted. Modules that may execute in
place, for example SEC, PEI_CORE or PEIM type UEFI/PI modules, are exempt​
from this requirement. For these modules, any power-of-2 value of 32 bytes or higher is
permitted, if the section alignment and file alignment are equal.

PE/COFF images whose section alignment is at least 4KiB should not contain any sections that
have both the IMAGE_SCN_MEM_WRITE and IMAGE_SCN_MEM_EXECUTE attributes
set.

8.3.4. GOP protocol

For systems with graphics video hardware, EFI_GRAPHICS_OUTPUT_PROTOCOL [UEFI §
12.9] is recommended to be implemented with the frame buffer of the graphics adapters directly
accessible (for example EFI_GRAPHICS_PIXEL_FORMAT is not PixelBltOnly). The GOP
FrameBufferBase must be reported as a CPU physical address, not as a bus address (like a PCI(e)
bus address).

8.3.5. Address translation support

If a platform includes PCI bus support, then the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
[UEFI § 14.2] and the EFI_PCI_IO_PROTOCOL [UEFI § 14.4] must be implemented. The
implementation of the EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL must provide the correct
Address Translation Offset field to translate between the host and bus addresses.
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION must report resources
produced by the PCI(e) root bridge, not resources consumed by its register maps. In the cases
where there are unpopulated PCIe slots behind the root bridge,
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL_CONFIGURATION must report valid resources
assigned (for example, or hot plug), or report no resources assigned.

8.4. UEFI Boot Services

8.4.1. Memory map

The UEFI environment must provide a system memory map, which must include all appropriate
devices and memories that are required for booting and runtime services.
All RAM defined by the UEFI memory map must be identity-mapped. This means that virtual
addresses must have equal physical addresses.

The default RAM allocated attribute must be EFI_MEMORY_WB.

8.4.2. UEFI loaded images

UEFI loaded images for RV64 must be in 64-bit PE/COFF format and must contain only RV64
code.

8.4.3. Configuration tables

A UEFI system that complies with this specification must provide the following tables through
the EFI Configuration Table:

●​ OS-A-SEE-HI Recipe
o​ EFI_ACPI_20_TABLE_GUID

▪​ The ACPI tables must be at version ACPI 6.6 or later with a HW-Reduced
ACPI model. See 9. ACPI Requirements.

o​ SMBIOS3_TABLE_GUID
▪​ This table defines the 64-bit entry point for the SMBIOS tables.

2cfd2657-db2c-4ae6-a37e-93524c5db5ff
▪​ The SMBIOS tables must conform to version XXX or later of the

SMBIOS Specification.
●​ EFI_CONFORMANCE_PROFILE_TABLE

o​ The following GUID in the EFI Conformance Profile Table is used to indicate
compliance to version 1.0.0 of this specification.

▪​ #define EFI_CONFORMANCE_PROFILE_OS_A_SEE_1_0_GUID​
{ 0x05453310, 0x0545, 0x0545, \​
{ 0x05, 0x45, 0x33, 0x05, 0x45, 0x33, 0x05, 0x45 }}

▪​ If the platform advertises the GUID in the EFI Conformance Profile Table,
then it must be compliant with the corresponding version of this
specification.

A compliant implementation must under no circumstances expose both ACPI and DTB tables at
the same time.

A UEFI system that complies with this specification can provide the following additional tables
through the EFI Configuration Table, with the following conditions:

●​ EFI_RT_PROPERTIES_TABLE_GUID
o​ This optional table should be published by a platform, if it no longer supports all

EFI runtime services once ExitBootServices() has been called by the OS.

8.5. UEFI Runtime Services

UEFI Runtime Services exist after the ExitBootServices() Boot Service is called. UEFI Runtime
Services provide a limited set of persistent services to the platform operating system or
hypervisor.

The Runtime Services that are listed in Appendix B must be provided.

8.5.1. Runtime Exception Level

UEFI enables runtime services to be supported at either S-Mode or HS-Mode, with appropriate
virtual address mappings. When called, subsequent runtime service calls must be from the same
Exception level.

8.5.2. Runtime Memory Map
Before calling ExitBootServices(), the final call to GetMemoryMap() returns a description of the
entire UEFI memory map. This description includes the persistent Runtime Services mappings.
After the call to ExitBootServices(), the Runtime Services page mappings can be relocated in
virtual address space by calling SetVirtualAddressMap(). This call allows the Runtime Services
to assign virtual addresses that are compatible with the incoming operating system memory map.
A UEFI runtime environment that is compliant with this specification must not be written with
any assumption of an identity mapping between virtual and physical memory maps.

8.5.3. Real-time Clock

The Real-time Clock must be accessible through the UEFI runtime firmware, and the following
services must be provided:

●​ GetTime()
●​ SetTime()

If the RTC is not subject to any arbitration issues between concurrent OS and UEFI accesses to
the underlying hardware, the RTC must be exposed via UEFI RT services.

For systems where the RTC is on an OS-managed bus (e.g. I2C, subject to arbitration issues due
to access to the bus by the OS), the RTC must be implemented in terms of an ACPI Time and
Alarm Device (TAD), to ensure all RTC accesses are done via the OS driver stack, and SetTime
must return EFI_UNSUPPORTED when accessed after ExitBootServices().

It is permissible for SetTime() to return EFI_UNSUPPORTED on systems where the Real-time
Clock cannot be set by this call.

If the SetTime() implementation returns EFI_UNSUPPORTED after ExitBootServices(), it must
be appropriately described in an EFI_RT_PROPERTIES_TABLE.

8.5.4. UEFI Reset and Shutdown

The UEFI Runtime service ResetSystem() must implement the following ResetType values, for
purposes of power management and system control:

●​ EfiResetCold
●​ EfiResetShutdown

o​ EfiResetShutdown must not reboot the system

If firmware updates are supported through the Runtime Service of UpdateCapsule(), then
ResetSystem() might need to support the EfiResetWarm command.

These Runtime Services must be implemented using the applicable SBI services. The following
table maps the UEFI and SBI reset calls:

EFI ResetSystem() ResetType sbi_system_reset type

EfiResetShutdown Shutdown

EfiResetCold Cold reboot

EfiResetWarm Warm reboot

EfiResetPlatformSpecific, with a platform-specific ResetData
GUID

IMPLEMENTATION
DEFINED.

Note: Operating systems must call UEFI Runtime Services to reset the system, preferring this to
SBI or other platform-specific mechanisms. This allows for UEFI implementations to perform
required platform tasks (e.g. servicing UpdateCapsule() calls, or persisting non-volatile variables
in certain implementations).

8.5.5. Set Variable

Non-volatile UEFI variables must persist across EFI ResetSystem() calls.
The UEFI Runtime Services must be able to update the variables directly without the aid of the
operating system.

Note: UEFI variables normally require dedicated storage that is not directly accessible from the
operating system.

8.6. Firmware Update

OS-A-SEE platforms are required to implement either an in-band or an out-of-band firmware
update mechanism.

If the firmware update is performed in-band (firmware on the application processor updates
itself), then the firmware must implement either:

●​ UpdateCapsule() [UEFI § 8.5.3].

○​ Firmware must accept updates in the "Firmware Management Protocol Data
Capsule Structure" format as described in "Delivering Capsules Containing
Updates to Firmware Management Protocol” [UEFI § 23.3].

●​ Delivery of Capsules via file on Mass Storage Device [UEFI § 8.5.5]

Firmware must also provide an ESRT [UEFI § 23.4] that describes every firmware image that is
updated in-band.

For in-band firmware updates at runtime, the firmware must support processing
If the firmware update is performed out-of-band (for example, by an independent Baseboard
Management Controller (BMC)), then the platform is not required to implement
UpdateCapsule() or the alternative Capsule update via Mass Storage Device.

UpdateCapsule() is only required before ExitBootServices() is called.
The UpdateCapsule() implementation is expected to be suitable for use by generic firmware
update services like fwupd and Windows Update. Both fwupd and Windows Update read the
ESRT table to determine what firmware can be updated and use an EFI helper application to call
UpdateCapsule() before ExitBootServices() is called.

Note: If an OS uses UEFI capsule services, the OS must clean the data cache for the memory
ranges corresponding to each ScatterGatherList element that is passed to the UpdateCapsule()
before issuing the call. The cache clean operation used must be the strongest available in the
platform. This is required only when UpdateCapsule() is called after ExitBootServices(). This
requirement is clarified in UEFI specification [UEFI § 8.5.3].

9. ACPI Requirements

9.1. ACPI Version

This document references the following specification and versions:​
ACPI 6.6[16] [1] Published XXXX 202X

ACPI is used to describe the hardware resources that are installed, and to handle aspects of
runtime system configuration, event notification, and power management.

The ACPI-compliant OS must be able to use ACPI to configure the platform hardware and
provide basic operations. The ACPI tables are passed, through UEFI, the OS to drive the
Operating System-directed Power Management (OSPM).

This section defines mandatory and optional ACPI features, and a few excluded features.

9.2. ACPI Provided Data Structures

 All platforms that comply with this specification must:

●​ Conform to the ACPI specification[16], version 6.6 or later. Legacy tables and methods
are not supported.

●​ Implement the HW-Reduced ACPI model. [ACPI § 3.11.1][ACPI § 4.1].
●​ Not support legacy ACPI Fixed Hardware interfaces.
●​ Provide either Interrupt-signaled Events [ACPI § 5.6.9] or GPIO-signaled Events [ACPI

§ 5.6.5] for the conveyance of runtime event notifications, from the system firmware to
the Operating System Power Management (OSPM).

●​ Implement XXX RISC-V FFH specification (XXX ...mapping to SBI calls, CSR
accesses)

●​ Implement XXX RISC-V specification for NMI/NMI-like firmware calls into the OS
(XXX similar to Arm SDEI ?)

9.3. ACPI Tables

ACPI tables are essentially data structures. The OSPM of the operating system receives a pointer
to the Root System Description Pointer (RSDP) from the boot loader. The OSPM then uses the
information in the RSDP to determine the addresses of all other ACPI tables. Platform designers
can decide whether the ACPI tables are stored in ROM, flash or DDR memory.
All platforms that comply with this specification:

●​ Must ensure that the structure of all tables is consistent with the ACPI 6.4 or later
specification. Legacy tables are not supported.

●​ Must ensure that the pointer to the RSDP is passed through UEFI to the OSPM as
described by UEFI.

●​ Must use 64-bit addresses within all address fields in ACPI tables.
o​ This restriction ensures a long-term future for the ACPI tables. Versions before

ACPI 5.0 allowed 32-bit address fields.

9.3.1. Mandatory ACPI Tables

The following tables are mandatory for all compliant systems.

9.3.1.1. RSDP

●​ Root System Description Pointer (RSDP) [ACPI § 5.2.5]
o​ Within the RSDP, the RsdtAddress field must be null (zero) and the XsdtAddresss

must be a valid, non-null, 64-bit value.

9.3.1.2. XSDT

●​ Extended System Description Table (XSDT) [ACPI § 5.2.8]
o​ The RSDP must contain a pointer to this table.
o​ This table contains pointers to all the other ACPI tables that the OSPM will use.

9.3.1.3. FADT

●​ Fixed ACPI Description Table (FADT) [ACPI § 5.2.9]
o​ The ACPI signature for this table is actually FACP. The name FADT is used for

historical reasons.
o​ This table must have the HW_REDUCED_ACPI flag set to comply with the

HW-Reduced ACPI model. Many other fields must be set to null when this flag is
set.

o​ Select an appropriate Preferred PM Profile, as defined by the ACPI specification
is selected [ACPI § 5.2.9.1].

▪​ For servers, select one of the server profiles.

9.3.1.4. DSDT and SSDT

●​ Differentiated System Description Table (DSDT) [ACPI § 5.2.11.1]
o​ This table provides the essential configuration information that is needed to boot

the platform.
●​ Secondary System Description Table (SSDT) [ACPI § 5.2.11.2]

o​ This table is optional. One or more of SSDT can be used to provide definition
blocks if necessary.

9.3.1.5. MADT

●​ Multiple APIC Description Table (MADT) [ACPI § 5.2.12]
o​ This table describes the harts
o​ This table describes the interrupt controllers, their version, and their

configuration.
▪​ On AIA systems with support for MSIs, the MADT must include an

IMSIC entry for each hart in the system (and optionally, 1 or more APLIC
entries)

▪​ On AIA systems without support for MSIs, the MADT must include 1
APLIC entry.

▪​ On PLIC systems, the MADT must include 1 PLIC entry.
●​ Entry ordering strongly can correlate with initialization order by an OS. The strong

recommendation for the entry order of RINTC structures is that it reflects affinity in
resource sharing, typically caches, in the system. That is, processors that share resources
should be close together in the ordering. For example, consider an SMT system with the
following properties:

o​ Composed of two sockets, in which each socket has a large cache that is shared by
all logical processors in the socket.

o​ Each socket contains two processor clusters, and within each cluster there is cache
that is shared by all logical processors in the cluster.

o​ Each physical processor contains two logical processors or hardware threads,
which share physical processor resources.

●​ The recommended indexing in the order of RINTC structures for this system should
increase in hardware thread, then cluster, and then socket ordering. In other words, it
should be:

o​ Socket 0, Cluster 0, Thread 0 - RINTC
o​ Socket 0, Cluster 0, Thread 1 - RINTC
o​ Socket 0, Cluster 1, Thread 0 - RINTC
o​ Socket 0, Cluster 1, Thread 1 - RINTC
o​ Socket 1, Cluster 0, Thread 0 - RINTC
o​ Socket 1, Cluster 0, Thread 1 - RINTC
o​ Socket 1, Cluster 1, Thread 0 - RINTC
o​ Socket 1, Cluster 1, Thread 1 - RINTC

9.3.1.6. RHCT

●​ RISC-V Hart Capabilities Table
o​ Communicates information about certain capabilities like ISA string.

9.3.1.8. SPCR

●​ Serial Port Console Redirection (SPCR). See http://uefi.org/acpi
o​ This table provides the essential configuration information that is needed for

headless operations, like a kernel shell or console.
o​ This table defines a serial port type, location, and interrupts.
o​ Note: This table can be used to describe the UART. When doing so,​

the Interface Type values must follow the requirements in the table below.
●​ This specification requires revision 2 or later of the SPCR table. Revisions before 2 are

not supported.
●​ The SPCR must be populated with correct ACPI GSIV interrupt routing information for

the UART device.
●​ The SPCR console device must be included in the DSDT.

UART hardware SPCR and DBG2 port type DSDT _HID

16550-compliant 0x12 IMPLEMENTATION DEFINED

9.3.1.9. MCFG

●​ PCI Memory-mapped Configuration Space (MCFG). [PCI FW § 4.1.2]
o​ This table describes the PCIe ECAM base address
o​ This table is required if PCIe is supported.

9.3.1.10. PPTT

●​ Processor Properties Topology Table (PPTT) [ACPI § 5.2.29].
o​ This table describes the topological structure of processors that are controlled by

the OSPM and their shared resources.

http://uefi.org/acpi

9.3.2. Recommended ACPI Tables

ACPI tables that are recommended are listed in Appendix E.

Not every platform that is compliant with this specification provides all of these tables. This is
because many tables reference optional platform features. For example, a platform does not have
to implement NUMA for memory. If it does, it must provide the SRAT and SLIT that describe
the NUMA topology to ACPI. In addition, HMAT can also be used to describe the heterogeneous
memory attributes.

Note: There are exceptional cases. For instance, if a platform supports CXL-attached memory, it
might be required to support the SRAT and HMAT tables. See Appendix G for more details on
rules related to CXL.

9.3.3. Optional ACPI Tables

All other tables that are defined in the ACPI specification can be used as needed for RV64
platforms, but only if they comply with syntax and semantics of the specification.

9.4. ACPI Definition Blocks

Within the DSDT or SSDT tables that are used to describe the platform, devices are defined by
ACPI definition blocks [ACPI § 5.2.11]. Each of these definition blocks describes one or more
devices that cannot be enumerated by the OSPM at boot time without more information. For
example, processors must be described by definition blocks, but PCI devices are enumerated by a
defined protocol.

9.5. ACPI Methods and Objects

A DSDT or SSDT definition block contains definitions of objects and methods which can be
invoked. These definitions can provide global information, but most of them provide information
that is specific to a single device. Objects and methods can also be predefined, either by the
ACPI specification or as needed by a platform designer.

All objects and methods must conform to the definitions in ACPI version 6.4 or later. Legacy
definitions are not supported.

ACPI methods that are recommended are listed in Appendix F. Not every platform that is
compliant with this specification provides all of these methods. This is because many methods
reference optional platform features.

9.5.1. Global Methods and Objects

Platforms must define processors as devices under the _SB (System Bus) namespace. [ACPI §
5.3.1].

Platforms must not define processors using the global _PR (Processors) namespace. [ACPI §
5.3.1].
Platforms that comply with this specification can provide the following predefined global
methods:

●​ _ SST: System Status Indicator. This method reports on the current overall state of the
system status indicator, if and only if a platform provides a user-visible status like an
LED. [ACPI § 9.2.1]

9.5.2. Device Methods and Objects

For each device definition in the platform DSDT or SSDT tables, platforms must provide the
following predefined methods or objects, in accordance with their definitions in version 6.4 or
later of the ACPI specification:

●​ _ADR: Address on the parent bus of the device. Either this object or the _HID must be
provided. This object is essential for PCI, for example. [ACPI § 6.1.1]

●​ _CCA: Cache Coherency Attribute. This object provides information about whether a
device has to manage cache coherency and about hardware support. This object is
mandatory for all devices that are not cache-coherent, and recommended for all devices.
This object is only relevant for devices that can access CPU-visible memory, like devices
that are DMA capable. [ACPI § 6.2.17]

●​ _CRS: Current Resource Settings. This method provides essential information to
describe resources, like registers and their locations, that are provided by the device.
[ACPI § 6.2.2]

o​ Note: The _PRS (Possible Resource Settings) and _SRS (Set Resource Settings)
are not supported.

●​ _HID: Hardware ID. This object provides the Plug and Play Identifier or the ACPI ID
for the device. Either this object or the _ADR must be provided. [ACPI § 6.1.5]

●​ _STA: Status. This method identifies whether the device is on, off, or removed. [ACPI §
6.3.7][ACPI § 7.2.4]

●​ _UID: Unique persistent ID. This object provides a unique value that is persistent across
boots, and can uniquely identify the device with either a common _HID or _CID. The
object is used, for example, to identify a PCI root bridge, if there are multiple PCI root
bridges in the system. [ACPI § 6.1.12]

Note: A _HID object must be used to describe any device that is enumerated by OSPM. OSPM
only enumerates a device when no bus enumerator can detect the ID. For example, devices on an
ISA bus are enumerated by OSPM. Use the _ADR object to describe devices that are enumerated
by bus enumerators other than OSPM.

9.5.3. GPIO Controllers

The HW-Reduced ACPI model has specific requirements for GPIO controllers and devices. If a
platform supports GPIO-signaled ACPI events, it must provide the following methods:

●​ _AEI: ACPI Event Interrupts. This object defines which GPIO interrupts are to be
handled as ACPI events. [ACPI § 5.6.5.2]

●​ _EVT: Event method for GPIO-signaled interrupts. For event numbers that are less than
255, the _Exx or _Lxx methods can be used instead. [ACPI § 5.6.5.3][ACPI § 5.6.4.1]

9.5.4. Generic Event Devices

The HW-Reduced ACPI model has specific requirements for Generic Event Devices. Platforms
that support interrupt-signaled ACPI events must provide the Generic Event Devices with the
following methods:

●​ _CRS: Current Resource Setting. This object designates those interrupts that shall be
handled by OSPM as ACPI events. [ACPI § 5.6.9.2]

●​ _EVT: Event method for interrupt-signaled interrupts. [ACPI § 5.6.9.3]

9.5.5. Address Translation Support

PCIe-compliant devices are recommended, eliminating the need to support legacy I/O port space.
However, if the platform supports legacy I/O port space, it must report the host (CPU) to the PCI
I/O bus address space translations using resource descriptors of type DWordIO, QWordIO or
ExtendedIO. The TranslationType must be set to TypeStatic. This is because of existing OS
behavior.

9.6. Hardware Requirements Imposed by ACPI

The term HW-Reduced does not imply anything about functionality. HW-Reduced simply means
that the hardware specification is not implemented. See Chapter 4 of the ACPI specification. All
functionality is still supported through equivalent software-defined interfaces.

Instead, the complexity of the OSPM in supporting ACPI is reduced. For example, many
requirements from versions earlier than version 5.0 can be ignored. However, this model does
impose some requirements on the hardware that is provided by the platform. In particular, either
interrupt-signaled events [ACPI § 5.6.9] or GPIO-signaled events [ACPI § 5.6.5] must be used to
generate interrupts that are functionally equivalent to General Purpose Events (GPEs). [ACPI §
5.6.4].

Platforms that comply with this specification must provide the following platform events:

●​ For the ACPI Platform Error Interface (APEI):
o​ One event for non-fatal error signaling [ACPI § 18.3.2.7.2]
o​ XXX NMI-equivalent signal for use in fatal errors.
o​ [ACPI § 18]

●​ At least one wake signal, which is routed through a platform event.

Note: for systems that do not support Sx states except S5 soft off, this can be just the power
button.

9.6.1. Process Performance Control

If OSPM-directed processor performance control is supported, then it must be exposed using
Collaborative Processor Performance Control (CPPC).

The use of Platform Communications Channel (PCC) is highly recommended for processor
performance management. [ACPI § 14]. Using PCC address space allows to support process
performance management in operating systems which do not support flexible address space for
CPPC Registers. See Bit[14] of Table 6-200 Platform-Wide _OSC Capabilities, [ACPI §
6.2.11.2].

Note: Provisioning a Platform Interrupt is recommended if PCC is used. See Platform
Communications Channel Global Flags, [ACPI § 14.1.1].

XXX mechanism for monitoring performance of a logical processor (XXX tying into a RISC-V
FFH specification?)

9.6.2. Time and Alarm Device

UEFI Runtime Service should be used to provide time services, unless the RTC is attached to an
OS-managed bus (e.g. I2C with other OS-visible devices). See UEFI Real-time Clock for more.
In situations where the TAD device depends on an OS driver for correct function (SPI, I2C, etc.),
it is recommended the TAD device is implemented in a way to function if the OS driver is not
loaded (e.g., when a driver is loaded for a dependency, ACPI invokes a method to bypass direct
access and go through OS-backed OperationRegion).

10. SMBIOS Requirements

10.1. SMBIOS Version

This document references the following specification and versions: SMBIOS XXX Published (as
a WIP) XXX 202x.

Legacy SMBIOS tables and formats are not supported.

10.1.1. SMBIOS Requirements on UEFI

●​ UEFI uses SMBIOS3_TABLE_GUID to identify the SMBIOS table
●​ UEFI uses the EfiRuntimeServicesData type for the system memory region containing

the SMBIOS table.
●​ UEFI must not use the EfiBootServicesData type for the SMBIOS data region, as the

regio​
reclaimed by a UEFI-compliant operating system after UEFI ExitBootServices() is called

10.2. SMBIOS Structures

SMBIOS implementations vary by system design and form factor. For an OS-A-SEE-compliant
system, the following SMBIOS structures are required or recommended. For required data within
these structures, please refer to Table 4 and Annex A of the SMBIOS specification.
Unless specified otherwise in the SMBIOS specification, all “human readable” strings in
SMBIOS structures must be UTF-8 encoded, using US-ASCII characters.
For additional guidance and requirements on SMBIOS tables reporting for telemetry and
servicing, refer to [20].

10.2.1. Type00: BIOS Information (Required)

●​ Vendor
●​ BIOS Version

o​ This field must match the BIOS firmware version string displayed in firmware
user interfaces or referenced in documentation

●​ BIOS Release Date
●​ BIOS ROM Size
●​ System BIOS Major Release
●​ System BIOS Minor Release

o​ System BIOS Major and Minor Release fields must not have values equal to
0FFh. The numeric values should correspond to the major and minor portions of
the BIOS Version string

●​ Embedded Controller Firmware Major Release
●​ Embedded Controller Firmware Minor Release
●​ Extended BIOS ROM Size

10.2.2. Type01: System Information (Required)

●​ Manufacturer
o​ This field must identify the system manufacturer company name

●​ Product Name
o​ This field must identify the company specific model of the system

●​ Version
●​ Serial Number

o​ This field must identify the individual system serial number
●​ UUID

o​ This field must provide a unique value for every individual system
●​ SKU Number

o​ This field must provide a system configuration identification
●​ Family

o​ This field must identify the company specific sub-brand name of the system

10.2.3. Type02: Baseboard (or Module) Information (Recommended)

●​ Manufacturer
●​ Product
●​ Version
●​ Serial Number
●​ Asset Tag
●​ Location in Chassis
●​ Board Type

10.2.4. Type03: System Enclosure or Chassis (Recommended)

●​ Manufacturer
●​ Type
●​ Version
●​ Serial Number
●​ Asset Tag Number

o​ The value of this field is recommended to be from a user-settable string
●​ Height
●​ SKU Number
●​ Enclosure Type

10.2.5. Type04: Processor Information (Required)

●​ Socket Designation
●​ Processor Type
●​ Processor Family

o​ This field must provide a human readable description of the processor product
line

●​ Processor Manufacturer
o​ This field must provide a human readable description of the processor

manufacturer.
●​ Processor ID
●​ Processor Version

o​ This field must provide a human readable description of the processor part
number.

●​ Max Speed
●​ Status
●​ Core Count
●​ Core Enabled
●​ Thread Count
●​ Processor Family 2
●​ Core Count 2
●​ Core Enabled 2
●​ Thread Count 2

Exactly one Type04 structure must be provided for every socket in the system. For example, N
Type04 structures, in a one-to-one mapping with each physical socket, out of a socket count of
N.

●​ A physical socket is defined as any of:
o​ a discrete SoC
o​ physical chip package (implementing a chip-to-chip extension of cache

coherency)
o​ chiplet implementing a set of processors / NUMA domain separate from other

chiplets on a package

10.2.6. Type07: Cache Information (Required)

●​ Socket Designation
●​ Cache Configuration
●​ Maximum Cache Size
●​ Installed Size
●​ Cache Speed
●​ Maximum Cache Size 2
●​ Installed Cache Size 2

10.2.7. Type08: Port Connector Information (Recommended for Platforms with
Physical Ports)

●​ Internal Reference Designator
●​ Internal Connector Type
●​ External Reference Designator
●​ External Connector Type
●​ Port Type

10.2.8. Type09: System Slots (Required for Platforms with Expansion Slots)

●​ Slot Designation
●​ Slot Type
●​ Slot Data Bus Width
●​ Current Usage
●​ Slot ID
●​ Slot Characteristics 1
●​ Slot Characteristics 2
●​ Segment Group Number
●​ Bus Number
●​ Device Function Number
●​ Peer grouping count
●​ Peer groups

o​ Slots that contain multiple devices are recommended to report all devices using
peer groups

10.2.9. Type11: OEM Strings (recommended)

●​ Count
o​ This field is needed only if vendor specific strings are described

10.2.10. Type13: BIOS Language Information (Recommended)

●​ Installable Languages
●​ Flags
●​ Current Language

10.2.11. Type14: Group Associations (Recommended for Platforms To Describe
Associations Between SMBIOS Types)

●​ Group Name
●​ Item Type
●​ Item Handle

This SMBIOS type can be used to describe association between SMBIOS types, such as
associating memory device (Type 17) to the processors they are attached to (Type 4).
10.2.12. Type16: Physical Memory Array (Required)

●​ Location
●​ Use
●​ Maximum Capacity
●​ Number of Memory Devices
●​ Extended Maximum Capacity

10.2.13. Type17: Memory Device (Required)

●​ Total Width
●​ Data Width
●​ Size
●​ Device Locator
●​ Memory Type
●​ Type Detail
●​ Speed
●​ Manufacturer
●​ Serial Number
●​ Asset Tag
●​ Part Number
●​ Extended Size
●​ Extended Speed

In addition, the following fields are required if NVDIMM is supported:

●​ Memory Technology
●​ Memory Operating Mode Capability
●​ Non-volatile Size
●​ Volatile Size
●​ Cache Size
●​ Logical Size

10.2.14. Type19: Memory Array Mapped Address (Required)

●​ Starting Address
●​ Ending Address
●​ Extended Starting Address
●​ Extended Ending Address

10.2.15. Type32: System Boot Information (Required)

●​ Boot Status

10.2.16. Type38: IPMI Device Information (Required for Platforms with
IPMIv1.0 BMC Host Interface)

●​ IPMI Specification Revision
●​ I2C Target Address
●​ Base Address
●​ Base Address Modifier
●​ Interrupt Info
●​ Interrupt Number

 Note: The ACPI SPMI Table replaces this Type in IPMI v1.5 and v2.0 [21]
10.2.17. Type39: System Power Supplies (Recommended for Servers)

●​ Location
●​ Device Name
●​ Manufacturer
●​ Serial Number
●​ Asset Tag Number
●​ Model Part Number
●​ Revision Level
●​ Max Power Capacity

Note: This applies only to power supplies that have a management/communication path to UEFI
or BMC
10.2.18. Type41: Onboard Devices Extended Information (Recommended)

●​ Reference Designation
●​ Device Type

●​ Device Type Instance
●​ Segment Group Number
●​ Bus Number
●​ Device Function Number

10.2.19. Type42: Redfish Host Interface (Required for Platforms Supporting
Redfish Host Interface [16])

●​ Interface Type
●​ Interface Specific Data
●​ Device Type must be 04h (USB Network Interface v2) or 05h (PCI/PCIe Network

Interface v2).
●​ Protocol Records

10.2.20. Type42: TPM Device (Required for Platforms with a TPM)

●​ Vendor ID
●​ Major Spec Version
●​ Minor Spec Version
●​ Firmware Version 1
●​ Firmware Version 2
●​ Description
●​ Characteristics

10.2.21. Type44: Standard Processor Additional Information (Required)
XXX this should list all fields once Type44 definitions are nailed down, right now it just
lists what is absolutely minimal to have. See
https://github.com/riscv/riscv-smbios/blob/main/riscv-smbios.adoc#standard-processor-add
itional-information-type-44-structure.

●​ ...
●​ Machine Vendor ID
●​ Machine Architecture ID
●​ Machine Implementation ID
●​ ...

10.2.22. Type45: Firmware Inventory Information (Recommended)

●​ Firmware Component Name
●​ Firmware ID
●​ Firmware ID Format
●​ Release Date
●​ Manufacturer
●​ Characteristics
●​ State
●​ Number of Associated Components

https://github.com/riscv/riscv-smbios/blob/main/riscv-smbios.adoc#standard-processor-additional-information-type-44-structure
https://github.com/riscv/riscv-smbios/blob/main/riscv-smbios.adoc#standard-processor-additional-information-type-44-structure

●​ Associated Components Handles

This SMBIOS type can be used to describe firmware components in the system, such as SBI
(when separate from a UEFI implementation), SCP, NIC firmware, and so on. Systems that
provide firmware inventory with a BMC (using Redfish for instance) and publish this SMBIOS
type must correlate the data in this SMBIOS type with the data provided by the BMC.
Note: Firmware inventory provided in this SMBIOS type is a static snapshot taken at the end of
the system boot. It does not reflect dynamic changes to firmware components versions due to
out-of-band updates or hot plug of devices. Systems that support dynamic FW updates should
not solely rely on this SMBIOS table for reporting FW inventory.
The entries in this table are platform specific, and not standardized. The following list provides a
guidance on sample use cases for an SMBIOS Type 45 implementation:

●​ System Controllers
o​ Could be multiple entries, describing different System Controllers in the system,

depending on​
whether their FW is reported independently or not. Examples are SCP, SatMC or
MCP, CXL​
Fabric Manager, and so on.

●​ M-Mode Firmware
o​ Could be a single entry that covers everything (for UEFI implementations that

don't rely on bootstrap from separate M-Mode SBI implementation), or multiple
entries (SBI implementation, TEE, etc).

o​ Would not exist in virtual machine environments.
●​ S-Mode Firmware

o​ For UEFI implementations in virtual machine environments or that rely on
bootstrap from separate M-Mode SBI implementation.

●​ Option Devices
o​ Could be an entry per PCIe option device (such as a NIC) that presents a firmware

version via UEFI Firmware Management Protocol (FMP)

10.2.23. Type46: String Property (Recommended)

●​ String Property ID
●​ String Property Value
●​ Parent handle

Systems that provide hardware inventory through a BMC (using Redfish for instance) can use
this SMBIOS type to report the UEFI Device Path strings of various system components and
correlate them to other SMBIOS structures.

Appendices

Appendix A: Required UEFI Boot Services

Service UEFI §

EFI_RAISE_TPL 7.1

EFI_RESTORE_TPL 7.1

EFI_ALLOCATE_PAGES 7.2

EFI_FREE_PAGES 7.2

EFI_GET_MEMORY_MAP 7.2

EFI_ALLOCATE_POOL 7.2

EFI_FREE_POOL 7.2

EFI_CREATE_EVENT 7.1

EFI_SET_TIMER 7.1

EFI_WAIT_FOR_EVENT 7.1

EFI_SIGNAL_EVENT 7.1

EFI_CLOSE_EVENT 7.1

EFI_INSTALL_PROTOCOL_INTERFACE 7.3

EFI_REINSTALL_PROTOCOL_INTERFACE 7.3

EFI_UNINSTALL_PROTOCOL_INTERFACE 7.3

EFI_HANDLE_PROTOCOL 7.3

EFI_REGISTER_PROTOCOL_NOTIFY 7.3

EFI_LOCATE_HANDLE 7.3

EFI_LOCATE_PROTOCOL 7.3

EFI_LOCATE_DEVICE_PATH 7.3

EFI_INSTALL_CONFIGURATION_TABLE 7.5

EFI_LOAD_IMAGE 7.4

EFI_START_IMAGE 7.4

EFI_EXIT 7.4

EFI_UNLOAD_IMAGE 7.4

EFI_EXIT_BOOT_SERVICES 7.4

EFI_GET_NEXT_MONOTONIC_COUNT 7.5

EFI_STALL 7.5

EFI_SET_WATCHDOG_TIMER 7.5

EFI_CONNECT_CONTROLLER 7.3

EFI_DISCONNECT_CONTROLLER 7.3

EFI_OPEN_PROTOCOL 7.3

EFI_CLOSE_PROTOCOL 7.3

EFI_OPEN_PROTOCOL_INFORMATION 7.3

EFI_PROTOCOLS_PER_HANDLE 7.3

EFI_LOCATE_HANDLE_BUFFER 7.3

EFI_LOCATE_PROTOCOL 7.3

EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES 7.3

EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES 7.3

EFI_CALCULATE_CRC32 7.5

EFI_COPY_MEM 7.5

EFI_SET_MEM 7.5

EFI_CREATE_EVENT_EX 7.1

Appendix B: Required UEFI Runtime Services

Service UEFI §

EFI_GET_TIME 8.3

EFI_SET_TIME 8.3

EFI_GET_WAKEUP_TIME 8.3

EFI_SET_WAKEUP_TIME 8.3

EFI_SET_VIRTUAL_ADDRESS_MAP 8.4

EFI_CONVERT_POINTER 8.4

EFI_GET_VARIABLE 8.2

EFI_GET_NEXT_VARIABLE_NAME 8.2

EFI_SET_VARIABLE 8.2

EFI_GET_NEXT_HIGH_MONO_COUNT 8.5

EFI_RESET_SYSTEM 8.5

EFI_UPDATE_CAPSULE 8.5

EFI_QUERY_CAPSULE_CAPABILITIES 8.5

EFI_QUERY_VARIABLE_INFO 8.2

Note: EFI_GET_WAKEUP_TIME and EFI_SET_WAKEUP_TIME must be implemented, but
might simply return EFI_UNSUPPORTED. EFI_UPDATE_CAPSULE and
EFI_QUERY_CAPSULE_CAPABILITIES must be implemented, but might simply return
EFI_UNSUPPORTED. Services that are not implemented must be appropriately declared in the
EFI_RT_PROPERTIES_TABLE.

Appendix C: Required UEFI Configuration Table Entries

Configuration Table

EFI_CONFORMANCE_PROFILE_TABLE_GUID

Appendix D: Optional and Conditionally Required UEFI
Configuration Table Entries

Configuration Table

EFI_ACPI_20_TABLE_GUID

SMBIOS3_TABLE_GUID

EFI_DTB_TABLE_GUID

EFI_RT_PROPERTIES_TABLE_GUID

EFI_SYSTEM_RESOURCE_TABLE GUID (ESRT)​
(UEFI Configuration Table)

Appendix E: Required UEFI Protocols

E.1 Core UEFI Protocols

Service UEFI §

EFI_LOADED_IMAGE_PROTOCOL 9.1

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL 9.2

EFI_DECOMPRESS_PROTOCOL 19.5

EFI_DEVICE_PATH_PROTOCOL 10.2

EFI_DEVICE_PATH_UTILITIES_PROTOCOL 10.5

E.2 Media I/O Protocols

Service UEFI §

EFI_LOAD_FILE_PROTOCOL 13.1

EFI_LOAD_FILE2_PROTOCOL 13.2

EFI_SIMPLE_FILE_SYSTEM_PROTOCOL 13.4

EFI_FILE_PROTOCOL 13.5

EFI_BLOCK_IO_PROTOCOL 13.9

EFI_BLOCK_IO2_PROTOCOL 13.10

The Load File protocol is used to obtain files from arbitrary devices that are primarily boot
options. This includes, for example, booting from network devices, The Load File 2 protocol is
used to obtain files from arbitrary devices that are not boot options. The Block I/O and Block I/O
2 protocols are used for block device access by operating system bootloaders (e.g. with their own
file system manipulation).

E.3 Console Protocols

Service UEFI §

EFI_SIMPLE_TEXT_INPUT_PROTOCOL 12.3

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL 12.2

EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL 12.4

E.4 Driver Configuration Protocols

Service UEFI §

EFI_HII_DATABASE_PROTOCOL 34.8

EFI_HII_STRING_PROTOCOL 34.3

EFI_HII_CONFIG_ROUTING_PROTOCOL 35.4

EFI_HII_CONFIG_ACCESS_PROTOCOL 35.5

E.5 Random Number Generator Protocols

Service UEFI §

EFI_RNG_PROTOCOL 37.5

The EFI_RNG_PROTOCOL is used by operating systems for entropy generation capabilities
early during OS boot. The protocol is recommended to support returning at least 256 bits of full
entropy in a single call, from a source with security strength of at least 256 bits.

E.6 RISC-V Protocols

Service §

RISCV_EFI_BOOT_PROTOCOL [3]

Appendix F: Optional and Conditionally Required UEFI
Protocols

This section lists optional UEFI protocols. These may be conditionally required for some
platforms, depending on the platform features.

F.1 Basic Networking Support

Service UEFI §

EFI_SIMPLE_NETWORK_PROTOCOL 24.1

EFI_MANAGED_NETWORK_PROTOCOL 25.1

EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL 25.1

F.2 Network Boot Protocols

Service UEFI §

EFI_PXE_BASE_CODE_PROTOCOL 24.3

EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL 24.4

EFI_MTFTP4_PROTOCOL 30.3

EFI_MTFTP6_PROTOCOL 30.4

F.3 IPv4 Network Support

Service UEFI §

EFI_ARP_PROTOCOL 29.1

EFI_ARP_SERVICE_BINDING_PROTOCOL 29.1

EFI_DHCP4_SERVICE_BINDING_PROTOCOL 29.2

EFI_DHCP4_PROTOCOL 29.2

EFI_TCP4_PROTOCOL 28.1.2

EFI_TCP4_SERVICE_BINDING_PROTOCOL 28.1.1

EFI_IP4_SERVICE_BINDING_PROTOCOL 28.3.1

EFI_IP4_CONFIG2_PROTOCOL 28.5

EFI_UDP4_PROTOCOL 30.1.2

EFI_UDP4_SERVICE_BINDING_PROTOCOL 30.1.1

Networking services are optional on platforms that do not support networking.

F.4 IPv6 Networking Support

Service UEFI §

EFI_DHCP6_PROTOCOL 29.3.2

EFI_DHCP6_SERVICE_BINDING_PROTOCOL 29.3.1

EFI_TCP6_PROTOCOL 28.2.2

EFI_TCP6_SERVICE_BINDING_PROTOCOL 28.2.1

EFI_IP6_SERVICE_BINDING_PROTOCOL 28.6.1

EFI_IP6_CONFIG_PROTOCOL 28.7

EFI_UDP6_PROTOCOL 30.2.2

EFI_UDP6_SERVICE_BINDING_PROTOCOL 30.2.1

EFI_DHCP6_PROTOCOL 29.3.2

EFI_DHCP6_SERVICE_BINDING_PROTOCOL 29.3.1

EFI_TCP6_PROTOCOL 28.2.2

EFI_TCP6_SERVICE_BINDING_PROTOCOL 28.2.1

EFI_IP6_SERVICE_BINDING_PROTOCOL 28.6.1

EFI_IP6_CONFIG_PROTOCOL 28.7

EFI_UDP6_PROTOCOL 30.2.2

EFI_UDP6_SERVICE_BINDING_PROTOCOL 30.2.1

F.5 VLAN Protocols

Service UEFI §

EFI_VLAN_CONFIG_PROTOCO
L 27.1

Networking services are optional on platforms that do not support networking.

F.6 iSCSI Protocols

Service UEFI §

EFI_ISCSI_INITIATOR_NAME_PROTOCOL 16.2

Networking services are optional on platforms that do not support networking. Support for iSCSI
is only required on machines that lack persistent storage, like an HDD. This configuration is
intended for thin clients and compute-only nodes.

F.7 REST Protocols

Service UEFI §

EFI_REST_EX_PROTOCOL 29.7.2.2

EFI_REST_EX_SERVICE_BINDING_PROTOCOL 29.7.2.1

EFI_REDFISH_DISCOVER_PROTOCOL 31.1.4

EFI_REST_JSON_STRUCTURE_PROTOCOL 29.7.3.2

F.8 HTTP Network Protocols

Service UEFI §

EFI_HTTP_SERVICE_BINDING_PROTOCOL 29.6.1

EFI_HTTP_PROTOCOL 29.6.2

EFI_HTTP_UTILITIES_PROTOCOL 29.6.3

EFI_HTTP_BOOT_CALLBACK_PROTOCOL 24.7.6

EFI_DNS4_SERVICE_BINDING_PROTOCOL 29.4

EFI_DNS4_PROTOCOL 29.4

EFI_DNS6_SERVICE_BINDING_PROTOCOL 29.5.1

EFI_DNS6_PROTOCOL 29.5.2

EFI_TLS_SERVICE_BINDING_PROTOCOL 28.10.1

EFI_TLS_PROTOCOL 28.10.2

EFI_TLS_CONFIGURATION_PROTOCOL 28.10.3

Networking services are optional on platforms that do not support networking.

F.9 Firmware Update

Service UEFI §

EFI_FIRMWARE_MANAGEMENT_PROTOCOL 23.1

Firmware Management Protocol is used for device firmware updates if the device UEFI driver
supports it. The ESRT configuration table is used for firmware updates if the system supports
capsule-based firmware updates.

F.10 CXL UEFI Protocols

Service §

EFI_ADAPTER_INFORMATION_PROTOCOL, with
EFI_ADAPTER_INFO_CDAT_TYPE_GUID type

UEFI §
11.12.6

CXL CDAT Table Access Data Object Exchange (DOE) method CXL §
8.1.11

Required on platforms with CXL devices.

Platforms supporting CXL devices with coherent memory are required to support extracting
Coherent Device Attribute Table (CDAT) [14] structures from the devices, using one of the
methods described above. The following requirements also apply:

●​ Platforms supporting CXL 1.1 devices must follow the rules outlined in [CXL § 9.11],
including the System​
Firmware view [CXL § 9.11.2], the System Firmware enumeration [CXL § 9.11.4], and
the CXL device discovery flow [CXL § 9.11.5]

●​ Platforms supporting CXL 2.0 devices must follow the rules outlined in CXL 2.0
Enumeration [CXL § 9.12]​
and CXL OS Firmware Interface Extensions [CXL § 9.14]

See Appendix G for more details on rules related to CXL.

F.11 PCIe UEFI Protocols

Service UEFI §

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 14.2

EFI_PCI_IO_PROTOCOL 14.4

Required on platforms with PCIe devices.

F.12 Graphics Protocols

Service UEFI §

EFI_GRAPHICS_OUTPUT_PROTOCOL 12.9.2

Required on platforms with framebuffers.

G Recommended and Conditionally Required ACPI Tables

G.1 I/O Topology

XXX depends on IOMMU and the ACPI table to support it.

G.2 TPM

ACPI table for describing a TPM2 device.

XXX need Start Method value for SBI ecall to support fTPM.

ACPI Signature Full Name TCG §

TPM2 TPM2 Table 8.3

G.3 Platform Error Interfaces

The following tables are required to support ACPI Platform Error Interfaces (APEI), which
convey error information to the operating system.

ACPI Signature Full Name ACPI §

BERT Boot Error Record Table 18.3.1

EINJ Error Injection Table 18.6.1

ERST Error Record Serialization Table 18.5

HEST Hardware Error Source Table 18.3.2

RAS2 ACPI RAS2 Feature Table ACPI code-first ECR

G.4 NUMA

The following tables describe topology and resources that are required by NUMA systems.

ACPI Signature Full Name ACPI §

SLIT System Locality Information Table 5.2.17

SRAT System Resource Affinity Table 5.2.16

HMAT Heterogeneous Memory Attribute Table 5.2.27

G.5 PCC

PCCT provides the interface to communicate to an on-platform controller.

ACPI Signature Full Name ACPI §

PCCT Platform Communications Channel Table 14

G.6 Platform Debug Trigger

PDTT describes one or more PCC subspace identifiers that can be used to trigger/notify the
platform specific debug facilities to capture non-architectural system state. This is intended as a
standard mechanism for the OSPM to notify the platform of a fatal crash (e.g. kernel panic or
bug check).

ACPI Signature Full Name ACPI §

PDTT Platform Debug Trigger Table 5.2.28

G.7 NVDIMM Firmware Interface

NFIT describes NVDIMM that is required if NVDIMM is supported or if UEFI-created
RAM-disks are present.

ACPI Signature Full Name ACPI §

NFIT NVDIMM Firmware Interface Table 5.2.25

G.8 Graphics Resource Table

BGRT describes system graphics resources when a video frame buffer is present.

ACPI Signature Full Name ACPI §

BGRT Boot Graphics Resource Table

G.9 IPMI

SPMI describes the processor-relative, translated, fixed resources of an IPMI system interface at
system boot time, if and only if IPMI has been implemented.
ACPI Signature Full Name ACPI §

SPMI Server Platform Management Interface Table https://uefi.org/acpi

G.10 CXL

The following tables are required to support CXL Host Bridges in the operating system. The
operating system may use this information to configure CXL.cache and CXL.mem devices.

ACPI Signature Full Name §

CEDT CXL Early Discovery Table CXL § 9.14.1

See Appendix G for more details on rules related to CXL.

G.11 iSCSI and NVMe-oF

Support for iSCSI/NVMe-oF is only required on machines that lack persistent storage, like an
HDD. This configuration is intended for thin clients, cloud instances and compute-only nodes.

ACPI Signature Full Name ACPI §

IBFT iSCSI Boot Firmware Table https://uefi.org/acpi

NBFT NVMe-oF Boot Firmware Table https://uefi.org/acpi

G.12 DBG2

Debug Port Table 2 (DBG2). See http://uefi.org/acpi

●​ This table provides a standard debug port.

http://uefi.org/acpi

●​ This table can be used to describe the UART. When doing so, the serial sub-type values
must follow the requirements in 9.3.1.8. SPCR.

●​ If OS debugging through serial port is desired, the system must make the UART instance
that is specified in DBG2 to be exclusively available for use by the debugger. How the
system enables this is IMPLEMENTATION DEFINED.

Appendix H: Recommended and Conditionally Required
ACPI Methods

This section lists recommended and conditionally required ACPI methods.

H.1 CPU Performance Control

For CPU performance and control, two mutually exclusive methods exist. Due to the CPPC
requirement, only the newer _CPC method is supported in conjunction with the PCCT. As per
ACPI spec, there is no support for mixed mode (CPPC & legacy PSS, _PCT, _PPC) operation.

Method Full Name ACPI §

_CPC Continuous Performance Control (replaces _PCT and
_PSS) 8.4.7.1

H.2 CPU and System Idle Control

For CPU and system idle management, the following method has been introduced in ACPI 6.0.

Metho
d Full Name ACPI §

_LPI Low Power Idle States 8.4.4

H.3 NUMA

The following methods describe topology and resources that are required by NUMA systems.

Metho
d Full Name ACPI §

_PXM Proximity 6.2.14

_SLI System Locality Information 6.2.15

_HMA Heterogeneous Memory Attributes 6.2.18

H.4 IPMI

The following methods describe the interface type and revision of an IPMI system interface at
system boot time.

Metho
d Full Name §

_IFT IPMIv2: the IPMI Interface Type, if IPMI has been
implemented IPMI § 5.5.2.4.4

_SR IPMIv2: the IPMI revision that is supported by the platform, if
IPMI has been implemented IPMI

H.5 Device Configuration and Control

The following methods provide configuration and control for devices.

Metho
d Full Name ACPI §

_CLS Class code (for non-PCI devices compatible with PCI drivers) 6.1.3

_CID Compatible ID 6.1.2

_DSD
Device Specific Data: provides more device properties and information.
Implementations are recommended to follow the guidance of the UEFI
forum as outlined in the DSD implementation Guide [17]

6.2.5

_DSM Device Specific Method (used to convey info to ACPI that it might not
currently have a mechanism to describe) 9.1.1

_INI Initialize a device 6.5.1

H.6 Resources

The following methods provide descriptions for devices.

Metho
d Full Name ACPI §

_MLS Human-readable description in multiple languages.
Note: preferred over _STR 6.1.7

_STR Device description (in a single language). Superseded by
_MLS 6.1.10

See Appendix G for more details on rules related to CXL.

H.7 CXL

The following methods are required to support CXL Host Bridges in the operating system. The
operating system may use this information to configure CXL.cache and CXL.mem devices.

Metho
d Full Name §

_CBR CXL Host Bridge Register Info ACPI § 6.5.11

_OSC CXL Operating System Capabilities CXL § 9.14.2

See Appendix G for more details on rules related to CXL.

H.8 Time and Alarm

Method Full Name ACPI §

_GRT Get the Real time 9.18

_SRT Set the Real time 9.18

_GWS Get Wake status 9.18

_CWS Clear Wake status 9.18

_STP Sets expired timer wake policy for the specified timer. 9.18

_STV Sets the value in the specified timer 9.18

_TIP Returns the current expired timer policy setting of the
specified timer 9.18

_TIV Returns the remaining time of the specified time 9.18

H.9 PCI and PCIe

Method Full Name §

_CBA Memory-mapped Configuration Base
Address PCI FW

_DSM _DSM definitions for PCI PCI FW

_OSC PCI Express capabilities PCI FW

Note: The _CBA method must be present if the system supports hot plug of host bridges. For the
_DSM method:

●​ If Steering Tags for cache locality are supported, then Function Index = 0Fh for Cache
Locality TPH Features must be implemented, see TPH ECN[23].

●​ If the firmware reserves memory regions using Reserved Memory Range nodes in the
XXX ACPI IOMMU table, then Function Index = 05h for preserving boot configuration
must be present on the host bridge below which the devices that use the reserved memory
regions reside.

●​ If firmware controls DPC features, then Function Index = 0Ch must be implemented.​
Various PCI-specific capabilities supported by the platform must be declared in the _OSC
method.

Appendix I: CXL Requirements

I.1 CXL Host Bridge

For each CXL host bridge in the system, the firmware must produce a CHBS (CXL Host Bridge
Structure) entry in the ACPI CEDT table to allow discovery of the CHBCR from the OS. Details
of the CEDT table and the CHBS structure are available in the CXL 2.0 specification [15].

I.2 CXL Root Device

A CXL root device is the origin of a hierarchy of CXL HDM and caches. The main purpose of a
CXL root device is to allow the OSPM to discover this origin and be able to enumerate CXL
HDM below that origin. The root device is also used for enabling interleaving across CXL host
bridges. The root device is also required for specifying global CXL-specific properties related to
CXL HDM. In particular, the QoS Throttling Groups (QTG) are related to the bandwidth and
latency properties described by the root device. The CXL specification defined a CXL-specific
_DSM method for QTG discovery. This _DSM method must be a child of the root device that it
is related to.

This section describes rules and recommendations related to the CXL root device and the
associated _DSM method.

I.2.1 ACPI Device Object for CXL Root Device

For each CXL root complex (or an origin of a CXL hierarchy) that needs to advertise its
properties to the OS, the firmware should create an ACPI CXL root device object in ACPI
namespace. The root device is recognized by its HID value of “ACPI0017”. The CXL root
device is described in detail in the CXL specification [15].

Note: The CXL Root Device HID value is defined in an ACPI code-first ECR (XXX it's
probably in the spec already)

●​ For each CXL root device whose properties need to be conveyed to the OS, the firmware
must include the following methods as a child of the root device:​
_DSM, function for retrieving QoS Throttling Group (QTG) IDs

I.3 NUMA

If a CXL device with HDM is present in a system, then the CDAT table presented by the device
must be used to obtain NUMA properties of the HDM. Furthermore, if presented to the OS, the
EFI memory map, and the HMAT, SRAT and CEDT tables must be populated with the
information obtained from the CDAT tables.

If CXL-attached HDM is present in a system, and if the CDAT DSEMTS structure advertised by
the device indicates that the HDM is normal memory (EfiConventionalMemory or
EfiConventionalMemory with the EFI_MEMORY_SP attribute set), then it is recommended that
the HMAT table is provided to describe the NUMA properties of the HDM.

If the HMAT table is accompanied by an SRAT table, it is also recommended to describe the
HDM. The SRAT table is a prerequisite for the HMAT table, as specified in the ACPI
specification.

If CXL HDM is present, and described in the SRAT table, the table must include a Generic Port
entry in the SRAT table for CXL HDM to describe the performance/NUMA properties of the
path between the PEs and the CXL gateway/bridge associated with each CXL host bridge. The
Generic Port entry should indicate whether it supports all architectural features related to
memory behind the port or not. The Architectural Transactions field of the Generic Port structure
must be set to 1 if all memory-specific architectural features are supported. Conversely, if one or
more such architectural features are not supported, the Architectural Transactions field must be
set to 0

Note: The SRAT Generic Port entry is defined in an ACPI code-first ECR (XXX probably in
the spec already).

If the HDM is not described in the HMAT and SRAT tables, the system must provide a CFMWS
structure in the CEDT to enable the OS to dynamically create a NUMA node for the HDM.
The SRAT table, if present, must include a Generic Initiator entry to describe CXL-attached
memory initiators. The SRAT table, if present, must include a memory affinity structure to
describe the NUMA properties of the CXL HDM.

	Illustrative OS-A-SEE Specification
	1. About this Document
	1.1. References
	1.1.1. Cross References

	1.2. Terms and Abbreviations

	2. Background
	3. Introduction
	4. Recipes
	4.1. OS-A-SEE-HI (Horizontally-Integrated) Recipe
	4.2. OS-A-SEE-VI (Vertically-Integrated) Recipe

	5. RISC-V Processor Requirements
	6. SBI Requirements
	7. Secondary Core Boot
	8. UEFI Requirements
	8.1. UEFI Version
	8.2. UEFI Compliance
	8.3. UEFI System Environment and Configuration
	8.3.1. Privilege Levels
	
	8.3.1.1. UEFI boot in HS-Mode
	
	8.3.1.2. UEFI boot in (V)S-Mode

	8.3.2. System Volume Format
	8.3.3. UEFI Image Format
	8.3.3.1. UEFI drivers
	8.3.3.2. UEFI applications
	8.3.3.3. PE/COFF image

	8.3.4. GOP protocol
	8.3.5. Address translation support

	8.4. UEFI Boot Services
	8.4.1. Memory map
	8.4.2. UEFI loaded images
	8.4.3. Configuration tables

	8.5. UEFI Runtime Services
	8.5.1. Runtime Exception Level
	8.5.2. Runtime Memory Map
	8.5.3. Real-time Clock
	8.5.4. UEFI Reset and Shutdown
	8.5.5. Set Variable

	8.6. Firmware Update

	9. ACPI Requirements
	9.1. ACPI Version
	9.2. ACPI Provided Data Structures
	9.3. ACPI Tables
	9.3.1. Mandatory ACPI Tables
	9.3.1.1. RSDP
	9.3.1.2. XSDT
	9.3.1.3. FADT
	9.3.1.4. DSDT and SSDT
	9.3.1.5. MADT
	9.3.1.6. RHCT
	9.3.1.8. SPCR
	9.3.1.9. MCFG
	9.3.1.10. PPTT

	9.3.2. Recommended ACPI Tables
	9.3.3. Optional ACPI Tables

	9.4. ACPI Definition Blocks
	9.5. ACPI Methods and Objects
	9.5.1. Global Methods and Objects
	9.5.2. Device Methods and Objects
	9.5.3. GPIO Controllers
	9.5.4. Generic Event Devices
	9.5.5. Address Translation Support

	9.6. Hardware Requirements Imposed by ACPI
	9.6.1. Process Performance Control
	9.6.2. Time and Alarm Device

	10. SMBIOS Requirements
	10.1. SMBIOS Version
	10.1.1. SMBIOS Requirements on UEFI

	10.2. SMBIOS Structures
	10.2.1. Type00: BIOS Information (Required)
	10.2.2. Type01: System Information (Required)
	10.2.3. Type02: Baseboard (or Module) Information (Recommended)
	10.2.4. Type03: System Enclosure or Chassis (Recommended)
	10.2.5. Type04: Processor Information (Required)
	10.2.6. Type07: Cache Information (Required)
	10.2.7. Type08: Port Connector Information (Recommended for Platforms with Physical Ports)
	10.2.8. Type09: System Slots (Required for Platforms with Expansion Slots)
	10.2.9. Type11: OEM Strings (recommended)
	10.2.10. Type13: BIOS Language Information (Recommended)
	10.2.11. Type14: Group Associations (Recommended for Platforms To Describe Associations Between SMBIOS Types)
	10.2.12. Type16: Physical Memory Array (Required)
	10.2.13. Type17: Memory Device (Required)
	10.2.14. Type19: Memory Array Mapped Address (Required)
	10.2.15. Type32: System Boot Information (Required)
	10.2.16. Type38: IPMI Device Information (Required for Platforms with IPMIv1.0 BMC Host Interface)
	10.2.17. Type39: System Power Supplies (Recommended for Servers)
	10.2.18. Type41: Onboard Devices Extended Information (Recommended)
	10.2.19. Type42: Redfish Host Interface (Required for Platforms Supporting Redfish Host Interface [16])
	10.2.20. Type42: TPM Device (Required for Platforms with a TPM)
	10.2.21. Type44: Standard Processor Additional Information (Required)
	10.2.22. Type45: Firmware Inventory Information (Recommended)
	10.2.23. Type46: String Property (Recommended)

	Appendices
	Appendix A: Required UEFI Boot Services
	Appendix B: Required UEFI Runtime Services
	Appendix C: Required UEFI Configuration Table Entries
	
	Appendix D: Optional and Conditionally Required UEFI Configuration Table Entries
	Appendix E: Required UEFI Protocols
	E.1 Core UEFI Protocols
	
	E.2 Media I/O Protocols
	E.3 Console Protocols
	E.4 Driver Configuration Protocols
	E.5 Random Number Generator Protocols
	E.6 RISC-V Protocols

	Appendix F: Optional and Conditionally Required UEFI Protocols
	F.1 Basic Networking Support
	F.2 Network Boot Protocols
	F.3 IPv4 Network Support
	F.4 IPv6 Networking Support
	F.5 VLAN Protocols
	F.6 iSCSI Protocols
	F.7 REST Protocols
	F.8 HTTP Network Protocols
	F.9 Firmware Update
	F.10 CXL UEFI Protocols
	F.11 PCIe UEFI Protocols
	F.12 Graphics Protocols

	G Recommended and Conditionally Required ACPI Tables
	G.1 I/O Topology
	G.2 TPM
	G.3 Platform Error Interfaces
	
	G.4 NUMA
	G.5 PCC
	G.6 Platform Debug Trigger
	
	G.7 NVDIMM Firmware Interface
	G.8 Graphics Resource Table
	G.9 IPMI
	G.10 CXL
	G.11 iSCSI and NVMe-oF
	
	G.12 DBG2

	Appendix H: Recommended and Conditionally Required ACPI Methods
	H.1 CPU Performance Control
	H.2 CPU and System Idle Control
	H.3 NUMA
	H.4 IPMI
	H.5 Device Configuration and Control
	
	H.6 Resources
	H.7 CXL
	H.8 Time and Alarm
	H.9 PCI and PCIe

	Appendix I: CXL Requirements
	I.1 CXL Host Bridge
	I.2 CXL Root Device
	I.2.1 ACPI Device Object for CXL Root Device

	I.3 NUMA

