

Abstract
For efficient design, verification and validation of integrated circuits and components it is
important to have an easy to customize and extend workflow. Python has become the industry
standard programming language for machine learning, scientific computing and engineering.

GDSFactory is a Python library to build chips (Photonics, Analog, Quantum, MEMs, …) that
provides you a common syntax for design, simulation (Ansys Lumerical, tidy3d, MEEP, MPB,
DEVSIM, SAX, Elmer, Palace, …), verification (Klayout DRC, LVS, netlist extraction,
connectivity checks, fabrication models) and validation.

The paper describes the capabilities of GDSFactory, showcasing its end-to-end workflow for
layout, simulation, verification, and validation, enabling users to turn their chip designs into
validated products.

Introduction
Hardware iterations typically require months of time and involve substantial financial
investments, often in the millions of dollars. In contrast, software iterations can be completed
within hours and at a significantly lower cost, typically in the hundreds of dollars. Recognizing
this discrepancy, GDSFactory aims to bridge the gap by leveraging the advantages of software
workflows in the context of hardware chip development.

To achieve this, GDSFactory offers a comprehensive solution through a unified Python API. This
API enables users to drive various aspects of the chip development process, including layout

1

design, verification (such as optimization, simulation, and design rule checking), and validation
(through the implementation of test protocols). By consolidating these functionalities into a
single interface, GDSFactory streamlines the workflow and enhances the efficiency of hardware
chip development.

Figure 1: High-level overview of design, verification and validation process.

2

With GDSFactory you can:

●​ Design (Layout, Simulation, Optimization)
○​ Capture design intent in a schematic and automatically generate a layout.
○​ Define parametric cells (PCells) functions in python or YAML. Define routes

between component ports.
○​ Test component settings, ports and geometry to avoid unwanted regressions.

●​ Verify (DRC, DFM, LVS)
○​ Run simulations directly from the layout thanks to the simulation interfaces. No

need to draw the geometry more than once.
■​ Run Component simulations (EM solver, FDTD, EME, TCAD, thermal …)
■​ Run Circuit simulations from the Component netlist (Sparameters, Spice)
■​ Build Component models and study Design For Manufacturing.

○​ Create DRC rule decks.
○​ Make sure complex layouts match their design intent (Layout Versus Schematic).

●​ Validate
○​ Make sure that as you define the layout you define the test sequence, so when

the chips come back you already know how to test them.
○​ Model extraction: extract the important parameters for each component.
○​ Build a data pipeline from raw data, to structured data and dashboards for

monitoring your chip performance.

Figure 2: You can drive your layout, design and simulations from a python or YAML code.

3

Design flow
GDSFactory offers a range of design capabilities, including layout description, optimization, and
simulation. It allows users to define parametric cells (PCells) in Python, facilitating the creation
of complex components. The library supports the simulation of components using different
solvers, such as finite element mesh, mode solver (finite element, finite difference time domain,
finite different Bloch mode solver), TCAD and thermal simulators, and FDTD simulations.
Optimization capabilities are also available through an integration with Ray Tune, enabling
efficient parameter tuning for improved performance.

As input, GDSFactory supports 3 different workflows that can be also mixed and matched.

1.​ Write python code. Recommended for developing cell libraries.
2.​ Write YAML code to describe your circuit. Recommended for circuit design. Notice that

the YAML includes schematic information (instances and routes) as well as Layout
information (placements).

3.​ Define schematic, export SPICE netlist, convert SPICE to YAML and tweak YAML.

As output you write a GDSII or OASIS file that you can send to your foundry for fabrication. It
also exports component settings (for measurement and data analysis) and netlists (for circuit
simulations). The following examples concentrate on photonic integrated design, however they
are readily adaptable for RF and analog circuit design.

Parametric PCells in Python or YAML
A PCell is a Parametric Cell describing the geometry of a particular device. PCells can accept
other PCells as arguments in order to build arbitrarily complex Components.

Figure 3: Example of PCell in python.

You can also describe automated single or bundles or routes between different components.

4

Figure 4: Example of PCell in python with automated routing.

The python and YAML syntax are equivalent. You can also write a PCell as below.

Figure 5: Example of PCell in YAML with automated routing. This YAML is equivalent to the
figure below.

A PCell is a Parametric Cell describing the geometry of a particular device. PCells can accept
other PCells as arguments in order to build arbitrarily complex Components. GDSFactory
supports PCells in python and YAML

5

Define what is YAML.
One of the advantages of YAML is that is more concise and multiple people write it in the same
way

Schematic Driven layout
For complex circuits you can start with a Schematic view that you can convert to YAML.

Figure 6: Schematic driven layout. You can export the SPICE netlist into YAML with approximate
placements of each component. Then fine tune the placements until you are happy with the
layout. The YAML format works as an intermediate step between layout and schematic.

Simulations directly from Layout
GDSFactory python API enables linking together different solvers so that you don’t have to draw
the geometry twice. Solvers work both at the device, circuit and system level.

6

Figure 9: GDSFactory microservices architecture allows you to run different types of simulations
with clearly defined inputs and outputs with the same python library.

Figure 10: From layout to mesh to simulation without having to replicate your layout in your
simulation. Here we show the GDSFactory meshing plugin. (a) Dummy heater layout, using the
generic layer stack. (b) Cross-sectional mesh (including cladding, bottom oxide, and substrate),
at the location indicated in the layout. (c) Full 3D mesh (cladding and substrate not shown)

Conclusion
The paper has highlighted the key features and functionalities of GDSFactory for hardware
design. By leveraging the power of Python, GDSFactory empowers designers with a familiar
and flexible programming language widely used in machine learning, scientific computing, and

7

engineering. This enables seamless integration with existing software ecosystems and
promotes code reuse and collaboration.

The verification and validation capabilities of GDSFactory play a crucial role in ensuring the
manufacturability and functionality of the designed chips. From functional verification to design
for robustness and manufacturing, GDSFactory offers tools and methods to design chips, detect
potential issues, and optimize performance.

Furthermore, GDSFactory provides an interactive schematic capture feature that enhances the
design process and facilitates the alignment between design intent and the produced layout.
With support for SPICE and YAML, designers have the flexibility to define and modify
schematics in a user-friendly manner, either visually or programmatically.

The ability to define test sequences and measurement parameters within GDSFactory
streamlines the post-fabrication testing process. By establishing a clear measurement and data
analysis pipeline, designers can evaluate the fabricated components against the design
specifications, ensuring the delivery of known good dies. In conclusion, GDSFactory is a
comprehensive and extensible design automation tool that empowers designers to efficiently
develop integrated circuits and components. Its Python-driven workflow, combined with its
integration capabilities, verification tools, schematic capture feature, and test sequence
definition, provides a powerful platform for turning chip designs into validated products.

Acknowledgements
We would like to acknowledge all of the contributors to the GDSFactory project who at the time
of writing are: Joaquin Matres Abril (Google), Simon Bilodeau (Google), Niko Savola (Google,
Aalto University), Marc de Cea Falco (Google), Helge Gehring (Google), Yannick Augenstein
(FlexCompute), Troy Tamas (GDSFactory), Ryan Camacho (BYU), Sequoia Ploeg (BYU), Prof.
Lukas Chrostowski (UBC), Erman Timurdogan (Lumentum), Sebastian Goeldi (PsiQuantum),
Damien Bonneau (PsiQuantum), Floris Laporte (GDSFactory), Alec Hammond (Meta), Thomas
Dorch (HyperLight), Jan-David Fischbach (KIT), Alex Sludds (Lightmatter), Igal Bayn (Quantum
Transistors), Skandan Chandrasekar (UWaterloo), Tim Ansell, Ardavan Oskoii (Meta), Bradley
Snyder (Superlight) and Amro Tork (Mabrains). Some of the GDSFactory authors have also
contributed to other pictures in the paper, Erman Timurdogan contributed the GDSFactory
design, verification and validation cycles figure and Dario Quintero contributed the GDSFactory
microservices architecture figure.

We would also like to acknowledge the foundational work of other open-source developers:
Adam McCaughan (PHIDL), Juan Sanchez (DEVSIM), Matthias Köfferlein (Klayout), Ardavan
Oskooi, Alec Hammond, Stephen Johnson (MEEP), Jesse Lu (FDTDZ), Dan Fritchman
(VLSIR), Dario Quintero (PIEL), Floris Laporte (SAX, MEOW).

8

	
	Abstract
	Introduction
	Design flow
	Parametric PCells in Python or YAML

	Schematic Driven layout
	Simulations directly from Layout
	Conclusion
	Acknowledgements

