Relationship to graph	Graph relationship of speed vs	Graph relationship of position vs	Graph the relationship between
	time for an object with a constant acceleration	time for an object with a constant acceleration starting at the origin from rest	spring <u>force</u> and da stretch.
Write an equation that is true in general (often from AP Physics 1 Equation sheet)	$v_x = v_{x0} + a_x t$	$x = x_0 + v_{x0}t + \frac{1}{2}at^2$	
Plug specific values into the general equation	N/A	$x = (0 m) + \left(0 \frac{m}{s}\right)t + \frac{1}{2}at^{2}$ $x = \frac{1}{2}at^{2}, \text{ in this case}$	N/A
Identify which values are constant	Constant:	Constant: a	Constant: k
and which are variable.	Variable:	Variable: x, t	Variable: F _S , x
Sketch what a graph of the original data will look like	v (m/s)	x (m) t (s)	F _s (N)
	00	00	
Line up your general equation with y=mx+b. Circle x and the independent variable together. Circle y and the dependent variable together.	$v = mx + b$ $v = a t + v_0$	$y = m x + b$ $x = \frac{1}{2}a t^{2}$	y = mx + b

Write on the axes what needs to be plotted to get a line. Use your circles to help match. If a quantity is squared, inverted, whatever, then its units must do the same.	v (m/s)	x (m) 1 t ² (s ²)	<u></u>
Identify what the slope of the line will represent physically (the coefficient on the linearized [I.V.])	slope = acceleration	$slope = \frac{1}{2}a$	
Identify what the y-intercept of the line will represent physically The constant term added to the [I.V.]	y-intercept = initial speed	y - intercept = 0	
	Graph the relationship between spring potential energy vs da stretch.	Graph the relationship between acceleration and mass for a constant force	Graph the relationship between F and r in the equation below.
Write an equation that is true in general (often from AP Physics 1 Equation sheet*)		$\vec{a} = \frac{\vec{F}_{net}}{m}$	$F = \frac{mv}{r^2}$
Plug specific values into the general equation	N/A	N/A	N/A
Identify which values are constant and which are variable.	Constant: Variable:	Constant: F _{ne} Variable: a, m	

Sketch what a graph of the original data will look like. Write physical quantities and units.	^	(c2/m) a (m/s²)	
Line up your general equation with y=mx+b. Circle x and the independent variable together. Circle y and the dependent variable together.		$a = F_{net} \cdot \frac{1}{m}$	
Write on the axes what needs to be plotted to get a line. Use your circles to help match.		a (m/s²)	
Identify what the slope of the line will represent physically (the coefficient on the linearized [I.V.])		$slope = F_{net}$	
Identify what the y-intercept of the line will represent physically The constant term added to the [I.V.]		y - intercept = 0	