
Iceberg REST Catalog Idempotency
Author: Huaxin Gao

Motivation
Requests and responses for Iceberg REST APIs typically go through multiple components: load
balancer, REST catalog server, persistent storage. Mutation calls (like commit) can fail for
various transient failures: network, LB, catalog server, or persistent. When failures happen, the
mutation may or may not have been committed to the persistent.

It is generally not safe for clients to retry the mutation requests in this case, as it can lead to
duplicate resource creation or unintended side effects. Here is an example with updateTable
REST API:

●​ An Iceberg client sends a POST updateTable request.
●​ The catalog server successfully committed the change to persistence. But a transient

network error between the catalog server and the persistence leads the catalog server to
return an error.

●​ The client cannot tell if the commit succeeded, so it retries the same commit request.
●​ On retry, the server detects that the latest table state doesn’t match the base from

update table request and responds with 409 Conflict.
●​ The client interprets the 409 as a failed commit and deletes the associated metadata

files (manifest list).
●​ Result: metadata corruption — the table snapshot references a deleted manifest list file.

We have been marking those failures as non-retryable to avoid potential table state corruption.
The downside is that now the client cannot recover from transient server failures. This proposal
is trying to make the mutation API idempotent, where a request can be retried with no additional
side effects. Clients can assume that any non-validation error can be retried until it succeeds,
which improves fault tolerance and reduces the likelihood of CommitStateUnknown errors. This
doesn’t fully fix every failure mode, but it significantly lowers duplicate-effect risk and
CommitStateUnknown events.

Goals
●​ Provide REST Catalog's with a client provided token that they can use to identify retried

requests
●​ Make support for handling idempotency optional so that existing client/server behavior

remains unchanged

Non-Goals
●​ Specify server internals. We do not define how REST Catalogs persist or reconcile

idempotency records.
●​ Replace existing client logic. We do not replace existing client logic; this header is optional

and additive.

Proposal
This proposal introduces idempotency key for Iceberg REST mutation APIs (e.g., POST
/updateTable, POST /createTable). The goal is to make mutation retries safe in the
presence of transient failures, preventing duplicate commits and metadata corruption.

Scope of Idempotency-Key support

Idempotency-Key applies to mutation endpoints only. See Appendix A: Affected REST
Endpoints for the complete list.

Standards alignment

This proposal aligns with the IETF HTTPAPI Idempotency-Key Internet-Draft: same header
name and “first request wins; subsequent requests with the same key return the original
finalized result” semantics. Unlike the draft’s payload fingerprint, Iceberg’s baseline is key-only;
no payload hashing/fingerprints are required. Duplicate recognition is by key within the
(operation type, resource id) scope. Support is advertised via idempotency-key-lifetime
(ISO-8601 duration); presence implies support. The Idempotency-Key header remains optional
in Iceberg, and clients only enable automatic same-key retries when discovery is present.

Client Responsibilities

●​ Generate a unique idempotency key per mutation (e.g., each updateTable attempt).​

●​ Attach the key in the request header (Idempotency-Key).​

●​ Reuse the same key only when retrying the exact same request payload.​

●​ Do not attempt a retry when the time between the first request and the retry request
exceeds the server’s advertised idempotency timeout. The server applies a grace
period; clients shouldn’t add their own.​

Server Responsibilities (behavioral, implementation-flexible)

https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-idempotency-key-header

●​ Bind the key to the request’s canonical payload upon first acceptance.
●​ Associate the key K with the operation type and resource id upon first acceptance.
●​ Detect duplicates for the same key: ​​Duplicate handling is key-only within the same

(operation, resource) scope:​

○​ Same key -> do not re-execute; return the stored/prior response.​

○​ Different payload -> 422 Unprocessable Content
(IdempotencyKeyConflict).​

●​ Record retention/cleanup is implementation-specific, not mandated by the spec.
●​ Honor window + grace. For a given (operation, resource, Idempotency-Key),

the server MUST apply duplicate handling for at least the advertised
idempotency-key-lifetime, measured from first acceptance of the key, and
SHOULD include a grace margin so retries sent near the deadline are not rejected due
to transit/skew.

The sequence below summarizes the client/server behavior for Idempotency-Key handling:

Initial flow:

Client REST Catalog Server
| |
|-- POST (Idempotency-Key=K)--> | first time with K?
| execute mutation
| | bind K
|<------------------------------| Final result (200 OK or terminal
4xx)

Retry: same key

Client REST Catalog Server
| |
|-- POST (Idempotency-Key=K)--> | K known
|<------------------------------| original result

Error case from Motivation (with Idempotency-Key)

Commit succeeded but response returned 503; duplicate request should not re-execute.

Client REST Catalog Server

| |

|-- POST (Idempotency-Key=K, | first time with K? yes

| op=commit, tbl=T) -->| execute mutation; commit snapshot

| | finalize K for (commit,T)

|<------------------------------| 503 CommitStateUnknown(response path timed
out)

|

|-- POST (Idempotency-Key=K, | K known & FINALIZED for (commit,T)

| op=commit, tbl=T) -->| DO NOT re-execute; replay prior result

|<------------------------------| 200 OK (replayed)

API Changes

New optional HTTP header:

idempotency-key:

 name: Idempotency-Key

 in: header

 required: false

 schema:

 type: string

 Format: uuid

 minLength: 36

 maxLength: 36

 example: "550e8400-e29b-41d4-a716-446655440000"

 description: |

 Optional client-provided idempotency key for safe request retries.

 When provided, the server guarantees at-most-once execution for requests
with the same key. If a request with this key has already been processed

 successfully, the server returns the original result instead of
reprocessing.

 When present, the server ensures no additional effects for requests that
carry

 the same Idempotency-Key within the same operation/resource scope. If a
prior

 request with this key has been finalized, the server returns the previously

 finalized response instead of re-executing the mutation.

 Finalization rules:

 - Finalize & replay: 200, 201, 204, and deterministic terminal 4xx

 - Do not finalize (not stored/replayed): 5xx, 409 request_in_progress.

 Key Requirements:

 - Must be unique per client mutation operation (e.g., updateTable,
createTable)

 - Should be generated randomly (e.g., UUID v4)Key format: UUID (V7
preferred)

 - Scoped to operation type and resource path

 - Catalogs may expire keys according to the advertised token lifetime.

 Best Practices:

 - Use UUID.randomUUID() or equivalent

 - Reuse the same key for retries of the same logical operation

 - Generate new keys for new operations

Note: HTTP header names are case-insensitive; Idempotency-Key is the canonical form used
in this specification.

Error subtype (for error responses)

Servers should include a machine-readable type field in error JSON for idempotency cases.

ErrorResponse.subtype:

 description: Machine-readable error subtype.

 enum: [request_in_progress, idempotency_replay_failed]

request_in_progress -> use with 409 when a duplicate arrives while the original is still
running.​
idempotency_replay_failed -> use with 5xx when a prior finalized result cannot be
replayed (do not re-execute).

Server behavior:

●​ If Idempotency-Key is provided:​

○​ Return the original success response for duplicate requests with the same
canonical payloads.

■​ Success: 200/201/204
■​ Terminal 4xx: e.g., validation/business conflict

●​ 409 Conflict / AlreadyExists
●​ 404 NotFound
●​ 422 Unable to process

■​ Transient 5xx MUST SHOULD NOT be stored​

○​ Return 422 Unprocessable Content. Conflict for duplicates with different
payloads.

Capability Discovery:

●​ Catalogs SHOULD expose whether idempotency key is supported by returning an
ISO-8601 duration for the window:​

 {
 "idempotency-key-respected": true,
 "idempotency-key-lifetime": "30mPT30M"
 }

idempotency-key-lifetime is the server’s acceptance window for duplicates, measured
from the moment the server first accepts the key. Catalogs MUST honor duplicates for at
least this window and SHOULD include an internal grace period to account for clock

skew and network/queueing delays, so a retry sent just before expiry is still accepted
even if it arrives slightly after.

●​ Client behavior:
○​ If the discovery block is absent, or idempotency-key-lifetime is

missing/invalid, Iceberg clients MUST treat idempotency keys as unsupported
and MUST NOT enable automatic same‑key retries.

○​ Only when idempotency-key-lifetime is present and valid may clients
enable automatic same‑key retries (bounded by the advertised lifetime).

Implementation Scope:

Only the API definition changes and client-side behavior will be implemented in Iceberg. The
server-side behaviors described are included for REST Catalog compliance and will be handled
by implementations.

Required Iceberg Client Changes
The following updates are required on the Iceberg client side to support idempotent mutation
requests:

REST Client Implementation

●​ Add support for including an optional Idempotency-Key header in all REST Catalog
mutation requests (POST, PUT, DELETE).​

●​ Allow callers (e.g., Iceberg API users) to specify the key per request.​

●​ Ensure internal HTTP retries send the same key when retrying an operation.​

●​ Use capability discovery from the server to decide whether to retry automatically after
transient failures.​

Catalog Providers

●​ Update RESTCatalog and any other catalog provider implementations to pass through
the Idempotency-Key from client configuration or API calls into the REST client layer.​

OpenAPI Specification Update

●​ Modify open-api/rest-catalog-open-api.yaml to document the optional
Idempotency-Key parameter for all applicable mutation endpoints.​

Testing

Use a mock REST catalog and mirror the same checks in the Catalog Compatibility Test Kit:

1.​ Discovery gating — When discovery returns { "idempotency-key-lifetime":
"PT30M" }, enable idempotent retries; otherwise do not.​

2.​ Duplicate (finalized) — First commit succeeds; retry with same key returns the original
2xx and does not re‑execute (assert single execution).​

3.​ In‑flight duplicate — While request #1 runs, request #2 with the same key -> 409
request_in_progress.​

4.​ Lifetime bound — After the advertised lifetime, client stops auto retries and surfaces
IdempotencyWindowExpired.​

 Optional Client-Side Deconfliction Fallback

●​ For catalogs that do not support idempotency keys, the client may perform lightweight
post-commit verification for table updates:​

○​ If commit status is unknown, fetch the latest table metadata and verify the
snapshot matches the intended commit. If a match is found, treat the operation
as successful.​

Server-Side Implementation (Informational)
When an Idempotency-Key is present, the REST Catalog server identifies duplicates by key
within the (operation type, resource id) scope; it does not inspect or compare request payloads.
Upon first acceptance, it records an idempotency entry containing the key and its scope
(operation type + resource id), plus status (e.g., IN_PROGRESS/FINALIZED) and timestamps.
This minimal record is sufficient to recognize later requests with the same key within the same
scope as duplicates.

On a request with an Idempotency-Key (within the same operation/resource
scope):

• Key unknown -> treat as a new request; create an IN_PROGRESS record and attempt the
mutation.

• Key known & FINALIZED -> do not re-execute; return the previously finalized response (2xx or
deterministic terminal 4xx). 5xx are not stored.

• Key known & IN_PROGRESS -> return 409 request_in_progress (server MAY block and then
return the final result; MAY include Retry-After`).

• Replay failure (finalized but prior response cannot be produced) -> do not re-execute; return
5xx with error type idempotency_replay_failed.

Request Hashing (Server-Side)

When an Idempotency-Key is present, the REST Catalog server must SHOULD determine
whether a repeated key refers to the same request payload or a different one.

The server computes:

SHA-256(canonicalPayload)

●​ canonicalPayload = JSON serialization of the request body with consistent field
ordering and no extraneous whitespace.​

●​ This hash is stored with the key for future comparisons.​

On a duplicate request:

●​ If the key is known and the hash matches -> return the stored response (Final response
only; transient errors are not stored) ​

●​ If the key is known but the hash differs -> reject with 422 Unprocessable Content
●​ If the key is unknown -> treat as a new request and attempt the mutation/commit.

Required Server-Side Persistence

The server should persist the following for each idempotency record:

●​ Scoped key — combination of operation type, resource path, and Idempotency-Key.​

●​ Status — IN_PROGRESS or FINALIZED.​

●​ Stored response — the HTTP status​

●​ Timestamps — creation time (and optionally last accessed time).

Expiration & Cleanup (Server-Side)

Idempotency records should expire after a configurable time period to prevent unbounded
storage growth. Expired records should be removed automatically by the server’s storage layer
or a background cleanup process.

Related Work
This proposal aligns with the IETF HTTPAPI Idempotency-Key Internet-Draft: same header
name and “first request wins; subsequent requests with the same key return the original
finalized result” semantics. Unlike the draft’s optional payload fingerprint, Iceberg’s baseline is
key-only; no payload hashing/fingerprints are required. Duplicate recognition is by key within the
(operation type, resource id) scope. Support is advertised via idempotency-key-lifetime
(ISO-8601 duration); presence implies support. The Idempotency-Key header remains optional
in Iceberg, and clients only enable automatic same-key retries when discovery is present.

Examples

Example 1a — updateTable retry causing corruption

Request 1 (initial commit):

POST /v1/tables/my_table/commit

●​ Server commits snapshot snap-001.
●​ Responds with 503 CommitStateUnknown due to a timeout

Client retry (no idempotency key):

POST /v1/tables/my_table/commit

●​ Server detects the snapshot already committed.​

●​ Returns 409 conflict.​

●​ Client interprets as a failed commit -> deletes snapshot files from S3.​

●​ Corruption: Metadata references snap-001, but files are missing.​

Example 1b — Same flow with Idempotency-Key

https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-idempotency-key-header

Request 1 (initial commit with key):

POST /v1/tables/my_table/commit

Idempotency-Key: abc123

●​ Server commits snapshot snap-001.​

●​ Responds with 503 CommitStateUnknown.

Client retry (same key):

POST /v1/tables/my_table/commit

Idempotency-Key: abc123

●​ Server looks up abc123, finds stored success.​

●​ Returns 200 OK (cached result).​

●​ Client does not delete files.​

●​ No corruption: Metadata and data remain consistent.​

Example 2 — Duplicate createTable request

Request 1:

POST /v1/tables

Idempotency-Key: key-xyz

Result: Table created successfully.

Request 2 (retry with same key):​
Server returns cached response: 200 OK (table already created).

Discussions:
Note: This section illustrates possible implementation choices and edge cases. It is informative
and not required for REST Catalog compliance.

In-Flight Duplicates & Key Binding

Scenario. R1 arrives with Idempotency-Key = K. While R1 is processing, R2 arrives with
the same K.

Binding. When the server accepts R1, it reserves K by creating an IN_PROGRESS record for
key K scoped to (op, resource).

Behavior for subsequent requests using K:

●​ IN_PROGRESS -> 409 Conflict (request_in_progress). The server MAY include
Retry-After or block and return the finalized result when available.​

When R1 finishes:

●​ If R1 succeeds, mark the key FINALIZED and store the original success response (or a
sufficient summary to reproduce it). Future requests with K return 2xx with the original
body/headers.​

●​ If R1 fails with a terminal client error (4xx), store that terminal response. Future
duplicates return the same 4xx. Transient 5xx responses SHOULD NOT be stored.​

Token Lifetime & Client Retry Behavior

What the catalog advertises:

●​ Via capability discovery, catalogs MAY return:​
idempotency-token-lifetime: "<duration>" (e.g., "PT30M")​

What the client tracks:

●​ When generating a key, the client records firstAttemptTime.​

●​ On each retry, the client compares now – firstAttemptTime to the advertised token
lifetime.​

Client behavior (intentionally open-ended for apps).

●​ If elapsed ≤ lifetime -> retry with the same key.​

●​ If elapsed > lifetime -> raise IdempotencyWindowExpired and stop automatic retries.​

○​ The application decides what to do next: resubmit as a new operation with a new
key, or give up.​

●​ Servers measure the window from first acceptance and include grace for skew/queueing.

Commit succeeded but idempotency record wasn’t finalized

Problem:​
 A mutation commits successfully, but writing the idempotency record (or finalizing it) fails.

Approach: reserve-then-finalize.

1.​ Reserve the key before work: create an entry K with status=IN_PROGRESS.​

2.​ Execute the mutation/commit.​

3.​ Finalize the key to FINALIZED and store the result (or minimal metadata).​

○​ If finalizing fails, the IN_PROGRESS row still exists.​

Retry behavior (same key).

●​ Lookup K. If it’s IN_PROGRESS:​

1.​ Reconcile by checking table state derived from the operation (e.g., for
updateTable, confirm the snapshot-id is present with the expected
parent-snapshot-id).​

2.​ If the state reflects the request change, mark K -> FINALIZED and return
success (original result).​

3.​ If it doesn’t, safely apply the mutation and then finalize.​

●​ If K is FINALIZED, return the stored response.​

●​ If the prior response cannot be produced, do not re-execute; return 5xx with error type
idempotency_replay_failed.​

Appendix

Appendix A — Affected REST Endpoints (Mutations Only)

Idempotency-Key is defined for the endpoints below. Read-only endpoints (e.g.,
GET/list/load/exists) are out of scope.

Tables

●​ POST /v1/tables — create/register​

●​ POST /v1/tables/rename — rename​

●​ DELETE /v1/tables/{identifier} — drop​

●​ POST /v1/tables/{identifier}/commit — commit/updateTable​

●​ POST /v1/tables/{identifier}/properties — set properties​

●​ DELETE /v1/tables/{identifier}/properties — remove properties​

Namespaces

●​ POST /v1/namespaces — create​

●​ DELETE /v1/namespaces/{namespace} — drop​

●​ POST /v1/namespaces/{namespace}/properties — set properties​

●​ DELETE /v1/namespaces/{namespace}/properties — remove properties​

●​ POST /v1/namespaces/{namespace}/register — register a table (by metadata
file)​

Views (if implemented)

●​ POST /v1/views — create/register​

●​ POST /v1/views/rename — rename​

●​ DELETE /v1/views/{identifier} — drop​

●​ POST /v1/views/{identifier}/versions — commit/replace definition​

●​ POST /v1/views/{identifier}/properties — set properties​

●​ DELETE /v1/views/{identifier}/properties — remove properties​

	Iceberg REST Catalog Idempotency
	Motivation
	Goals
	Non-Goals
	Proposal
	Client Responsibilities
	Server Responsibilities (behavioral, implementation-flexible)

	API Changes
	Required Iceberg Client Changes
	Server-Side Implementation (Informational)
	Related Work
	Examples
	Example 1a — updateTable retry causing corruption
	Example 1b — Same flow with Idempotency-Key
	Example 2 — Duplicate createTable request

	Discussions:
	Note: This section illustrates possible implementation choices and edge cases. It is informative and not required for REST Catalog compliance.
	In-Flight Duplicates & Key Binding
	Token Lifetime & Client Retry Behavior
	What the catalog advertises:
	●​Via capability discovery, catalogs MAY return:​idempotency-token-lifetime: "<duration>" (e.g., "PT30M")​
	What the client tracks:
	●​When generating a key, the client records firstAttemptTime.​
	●​On each retry, the client compares now – firstAttemptTime to the advertised token lifetime.​
	Client behavior (intentionally open-ended for apps).
	●​If elapsed ≤ lifetime -> retry with the same key.​
	●​If elapsed > lifetime -> raise IdempotencyWindowExpired and stop automatic retries.​
	○​The application decides what to do next: resubmit as a new operation with a new key, or give up.​
	●​Servers measure the window from first acceptance and include grace for skew/queueing.

	Commit succeeded but idempotency record wasn’t finalized

	Appendix
	Appendix A — Affected REST Endpoints (Mutations Only)
	Tables
	Namespaces
	Views (if implemented)

