
Author: Ionut Nedelcu

Ray Tracing Support
Unity Engine Features

Mesh Sampling in Ray Tracing Shaders

The following is a technical document describing how vertex attributes are read and interpolated
in HLSL code when authoring ray tracing shaders in Unity.

The target audience for this document is graphics engineers who develop ray tracing effects in
Unity.

Overview
Unity 2019.3 introduced experimental ray tracing support using DirectX 12 graphics API and new
shader types specific to DirectX Raytracing (DXR) are now supported.

In regular rasterization based rendering, a vertex shader will define its vertex data inputs using
vertex shader semantics (e.g. POSITION, TEXCOORD0) and the GPU will read vertex attributes
from the input vertex streams and convey the data to GPU registers. This is done in an opaque
way and the shader author is not concerned with how the data is read. However, in ray tracing
there is no such mechanism and the vertex and index data needs to be manually read from Mesh
vertex streams and the vertex attribute values have to eventually be decoded.

When ray-triangle intersections are detected during acceleration structure traversal, “any hit
shaders” if available and a “closest hit shader” will be invoked depending on the position of the
intersection point relative to the origin of the ray. Typically, PrimitiveIndex() HLSL intrinsic is used
to retrieve the index of the triangle within the mesh geometry inside the bottom-level
acceleration structure instance. Using this value, one can read the 3 indices of the vertices
forming the triangle that was hit by the ray and finally interpolate various vertex attributes that are
needed for different purposes like lighting calculations using normals, reading textures using
UVs, etc. Vertex attribute interpolation is described later in this document.

Important notes:

●​ Mesh sampling is only available in closest hit shaders and any hit shaders that are part of
the shader passes within a Material shader (a *.shader file) used for rendering Meshes.

●​ There is no data duplication when using ray tracing. The same Mesh and Texture data is
used for both regular rasterization and ray tracing.

Author: Ionut Nedelcu

●​ As of Unity 2021.2, only Mesh Renderers and Skinned Mesh Renderers are supported in
ray tracing.

Built-in Shader Parameters
The vertex stream array and the index buffer along with mesh and vertex attributes information
buffers can be accessed in HLSL code using the UnityRayTracingMeshUtils.cginc built-in include
file which is part of the Unity Editor installation. The shader include file defines the following
built-in structures and buffers:

#define kMaxVertexStreams 8

struct MeshInfo
{
 uint vertexSize[kMaxVertexStreams];
 uint baseVertex;
 uint vertexStart;
 uint indexSize;
 uint indexStart;
};

struct VertexAttributeInfo
{
 uint Stream;
 uint Format;
 uint ByteOffset;
 uint Dimension;
};

StructuredBuffer<MeshInfo> unity_MeshInfo_RT;
StructuredBuffer<VertexAttributeInfo> unity_MeshVertexDeclaration_RT;

ByteAddressBuffer unity_MeshVertexBuffers_RT[kMaxVertexStreams];
ByteAddressBuffer unity_MeshIndexBuffer_RT;

When executing ray tracing dispatches using RayTracingShader.Dispatch or
CommandBuffer.DispatchRays commands, Unity will bind the appropriate buffers of the Mesh
used by each ray tracing instance that’s part of a RayTracingAccelerationStructure.

There can be up to 8 vertex streams containing different vertex attributes in the
unity_MeshVertexBuffers_RT array and a single index buffer bound to
unity_MeshIndexBuffer_RT.

https://docs.unity3d.com/2021.2/Documentation/ScriptReference/Experimental.Rendering.RayTracingShader.Dispatch.html
https://docs.unity3d.com/2021.2/Documentation/ScriptReference/Rendering.CommandBuffer.DispatchRays.html
https://docs.unity3d.com/2021.2/Documentation/ScriptReference/Experimental.Rendering.RayTracingAccelerationStructure.html

Author: Ionut Nedelcu

Typically, Mesh assets define the number vertex streams used and the format of the vertex
attributes but a Mesh object can also be created from C# using various Mesh scripting APIs. For
MeshRenderers, additional vertex attributes can also be specified using
MeshRenderer.additionalVertexStreams.
unity_MeshInfo_RT and unity_MeshVertexDeclaration_RT are helper buffers used to exactly
locate the vertex attributes within vertex streams.

When Renderers use multiple Materials, each sub-Mesh corresponding to a Material will use a
different unity_MeshInfo_RT buffer, usually with a different MeshInfo.indexStart value.

unity_MeshVertexDeclaration_RT is a VertexAttributeInfo array containing information about each
vertex attribute of a Mesh: the stream index into unity_MeshVertexBuffers_RT buffer array, a
vertex attribute format, the vertex attribute byte offset within a vertex and the vertex attribute
dimension.

One of the following defines can be used to index into the unity_MeshVertexDeclaration_RT
structured array.

#define kVertexAttributePosition ​ 0
#define kVertexAttributeNormal ​ 1
#define kVertexAttributeTangent ​ 2
#define kVertexAttributeColor ​ 3
#define kVertexAttributeTexCoord0 ​ 4
#define kVertexAttributeTexCoord1 ​ 5
#define kVertexAttributeTexCoord2 ​ 6
#define kVertexAttributeTexCoord3 ​ 7
#define kVertexAttributeTexCoord4 ​ 8
#define kVertexAttributeTexCoord5 ​ 9
#define kVertexAttributeTexCoord6 ​ 10
#define kVertexAttributeTexCoord7 ​ 11

Helper Functions To The Rescue
There is a couple of HLSL helper functions in the UnityRayTracingMeshUtils.cginc include that
will handle the complexity when reading vertex attributes and vertex indices:

uint3 UnityRayTracingFetchTriangleIndices(uint primitiveIndex)

-​ Reads the 3 vertex indices of the triangle that the ray hit.
-​ Called using PrimitiveIndex() HLSL intrinsic as a parameter.
-​ Supports both 16-bit and 32-bit index buffers.

float2 UnityRayTracingFetchVertexAttribute2(uint vertexIndex, uint attributeType)
float3 UnityRayTracingFetchVertexAttribute3(uint vertexIndex, uint attributeType)
float4 UnityRayTracingFetchVertexAttribute4(uint vertexIndex, uint attributeType)

https://docs.unity3d.com/2021.2/Documentation/ScriptReference/Mesh.html
https://docs.unity3d.com/2021.2/Documentation/ScriptReference/MeshRenderer.html
https://docs.unity3d.com/2021.2/Documentation/ScriptReference/MeshRenderer-additionalVertexStreams.html

Author: Ionut Nedelcu

-​ Reads various vertex attributes with different dimensions.
-​ Called using the result of the UnityRayTracingFetchTriangleIndices function and one of the

kVertexAttribute* defines.
-​ Returns a zero vector if the vertex attribute does not exist in one of the vertex streams.
-​ Supports most common vertex attribute formats (see below).
-​ If the actual vertex attribute dimension is smaller than the one intended by the function call then

the extra channels are zeroed out (e.g. calling UnityRayTracingFetchVertexAttribute4(index,
kVertexAttributeTexCoord0) but the actual TexCoord0 has only 2 channels it will return a float4(u, v,
0, 0)).

bool UnityRayTracingHasVertexAttribute(uint attributeType) - Unity 2021.2 and above

-​ Checks if the vertex attribute attributeType is present in one of the unity_MeshVertexBuffers_RT
vertex streams.

-​ One use case is when reading UVs for sampling baked lightmaps. These UVs are bound to
TexCoord1 but they are not mandatory perhaps because they were not generated at import time
for example. The standard in Unity is to use regular TexCoord0 UVs for sampling baked lightmaps
when TexCoord1 UVs are missing.

In Unity 2021.2, the following vertex attribute formats (for VertexAttributeInfo.Format) are
supported by UnityRayTracingFetchVertexAttribute functions as defined in
UnityRayTracingMeshUtils.cginc:

#define kVertexFormatFloat ​ 0
#define kVertexFormatFloat16 ​ 1
#define kVertexFormatUNorm8 ​ 2
#define kVertexFormatUNorm16 ​ 4
#define kVertexFormatSNorm16 ​ 5

These vertex attribute formats are not currently supported:

#define kVertexFormatSNorm8 ​ 3
#define kVertexFormatUInt8 ​ 6
#define kVertexFormatSInt8 ​ 7
#define kVertexFormatUInt16 ​ 8
#define kVertexFormatSInt16 ​ 9
#define kVertexFormatUInt32 ​ 10
#define kVertexFormatSInt32 ​ 11

Vertex Attribute Interpolation
When an “any hit shader” or a “closest hit shader” is invoked, the fixed-function ray-triangle
intersection mechanism will pass the ray payload and the triangle barycentric coordinates of the
intersection as an input to these shader functions.

Author: Ionut Nedelcu

E.g.
[shader("closesthit")]
void ClosestHitMain(inout RayPayload payload, in AttributeData attribs)

The standard format of the AttributeData structure is:

struct AttributeData
{
 float2 barycentrics;
};

Given the vertex attributes v0, v1 and v2 for the 3 vertices of a triangle, barycentrics.x is the
weight for v1 and barycentrics.y is the weight for v2. For example, the shader code can
interpolate by doing:

float3 barycentricCoords = float3(1.0 - attribs.barycentrics.x - attribs.barycentrics.y, attribs.barycentrics.x,
attribs.barycentrics.y);

v = v0 * barycentricCoords.x + v1 * barycentricCoords.y + v2 * barycentricCoords.z;

Sample Code
In the next example we will read the 3 vertices of the intersected triangle and interpolate them to
get the interpolated world normal at the intersection point. Note that only the vertex normal is
read from the vertex stream but other attributes like UVs or local vertex position can be read and
interpolated in a similar fashion.

SubShader
{
 Pass
 {
 Name "Test"
 Tags{ "LightMode" = "RayTracing" }

 HLSLPROGRAM

 #include "UnityRaytracingMeshUtils.cginc"
 #include "RayPayload.hlsl"

 #pragma raytracing test
​ ​ ​
 struct AttributeData
 {
 float2 barycentrics;
 };

Author: Ionut Nedelcu

 struct Vertex
 {
 float3 normal;
 };
 Vertex FetchVertex(uint vertexIndex)
 {
 Vertex v;
 v.normal = UnityRayTracingFetchVertexAttribute3(vertexIndex, kVertexAttributeNormal);
 return v;
 }

 Vertex InterpolateVertices(Vertex v0, Vertex v1, Vertex v2, float3 barycentrics)
 {
 Vertex v;
 #define INTERPOLATE_ATTRIBUTE(attr) v.attr = v0.attr * barycentrics.x + v1.attr * barycentrics.y +
v2.attr * barycentrics.z
 INTERPOLATE_ATTRIBUTE(normal);
 return v;
 }

 [shader("closesthit")]
 void ClosestHitMain(inout RayPayload payload, in AttributeData attribs)
 {
 uint3 triangleIndices = UnityRayTracingFetchTriangleIndices(PrimitiveIndex());

 Vertex v0, v1, v2;
 v0 = FetchVertex(triangleIndices.x);
 v1 = FetchVertex(triangleIndices.y);
 v2 = FetchVertex(triangleIndices.z);

 float3 barycentricCoords = float3(1.0 - attribs.barycentrics.x - attribs.barycentrics.y,
attribs.barycentrics.x, attribs.barycentrics.y);

 Vertex v = InterpolateVertices(v0, v1, v2, barycentricCoords);

 float3 worldNormal = normalize(mul(v.normal, (float3x3)WorldToObject()));

 payload.color.xyz = worldNormal;
 }

 ENDHLSL
 }
}

The full project can be accessed in github:
https://github.com/INedelcu/RayTracingShader_VertexAttributeInterpolation

https://github.com/INedelcu/RayTracingShader_VertexAttributeInterpolation

Author: Ionut Nedelcu

The project will simply generate the world normals of the scene geometry as output in Game
View through the ray generation shader in RayGenerator.raytrace.

RayTracingShaderTest.shader contains the code from the previous sample.

https://github.com/INedelcu/RayTracingShader_VertexAttributeInterpolation/blob/main/Assets/Shaders/RayGenerator.raytrace
https://github.com/INedelcu/RayTracingShader_VertexAttributeInterpolation/blob/main/Assets/Shaders/RayTracingShaderTest.shader

	Ray Tracing Support
	Mesh Sampling in Ray Tracing Shaders
	Overview
	Built-in Shader Parameters
	Helper Functions To The Rescue
	Vertex Attribute Interpolation
	Sample Code

