PRACTICE 3.3 – Transforming Functions

In words, describe the transformation that has been made to the parent quadratic $y = x^2$ in each function given below.

1 a
$$y = (x-3)^2$$
 b $y = (x+4)^2$ **c** $y = (x-h)^2$

b
$$y = (x+4)^2$$

c
$$y = (x - h)^2$$

2 a
$$y = x^2 + 1$$

b
$$y = x^2 - 2$$

c
$$y = x^2 + k$$

3 a
$$y = -x^2$$

b
$$y = 2x^2$$

2 **a**
$$y = x^2 + 1$$
 b $y = x^2 - 2$ **c** $y = x^2 + k$
3 **a** $y = -x^2$ **b** $y = 2x^2$ **c** $y = \frac{1}{3}x^2$
d $y = -3x^2$ **e** $y = ax^2$

d
$$y = -3x^2$$

$$e \quad y = ax^2$$

$$)^2 - 2$$

b
$$y = 2(x-3)^2$$

4 a
$$y = (x+4)^2 - 2$$
 b $y = 2(x-3)^2$ **c** $y = -\frac{1}{2}x^2 + 4$ **d** $y = 3(x-2)^2 - 4$ **e** $y = a(x-h)^2 + k$

d
$$y = 3(x-2)^2 - 4$$

e
$$v = a(x - h)^2 + k$$

For problem 5, open Desmos and enter: $y = a(x - h)^2 + k$. Make "a", "h", and "k" sliders. Investigate the effect of changing these three parameters.

Factual What effect do a, h and k have in transforming the graph of $y = x^2$ to the graph of $y = a(x - h)^2 + k$?

- 6 Without using your GDC, sketch a graph of $y = x^2$. Then apply the transformations in the order given.
 - a Vertical stretch with scale factor 2; horizontal translation right 3; vertical translation down 4. Write down the equation of the final graph.
 - b Horizontal translation right 3; vertical translation down 4; vertical stretch with scale factor 2. Write down the equation of the final graph.
- * Full, worked solutions for the Practice Assignments below

1 Sketch the parent quadratic, $y = x^2$, and the graph of y = g(x) on the same axes. Then write down the coordinates of the vertex and the equation of the axis of symmetry for the graph of g.

a
$$g(x) = (x+3)^2$$
 b $g(x) = -x^2 + 4$

b
$$g(x) = -x^2 + 4$$

c
$$g(x) = \frac{1}{4}x^2$$

c
$$g(x) = \frac{1}{4}x^2$$
 d $g(x) = 2(x-4)^2 - 3$

continued next page

Exercise 3J

1 Sketch the parent quadratic, $y = x^2$, and the graph of y = g(x) on the same axes. Then write down the coordinates of the vertex and the equation of the axis of symmetry for the graph of *g*.

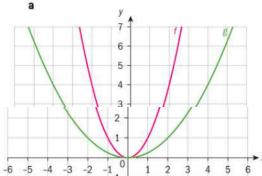
a
$$g(x) = (x+3)^2$$
 b $g(x) = -x^2 + 4$

b
$$g(x) = -x^2 + 4$$

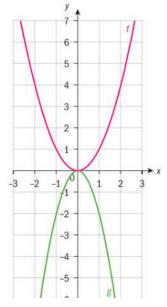
$$\mathbf{c} \quad g(x) = \frac{1}{4}x^2$$

c
$$g(x) = \frac{1}{4}x^2$$
 d $g(x) = 2(x-4)^2 - 3$

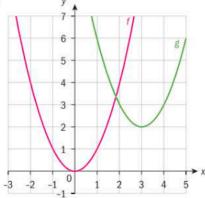
2 Describe the transformations of the graph of $f(x) = x^2$ that lead to the graph of g. Then write an equation for g(x).

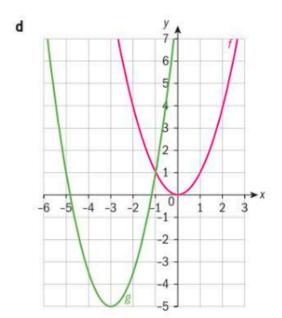


b



C





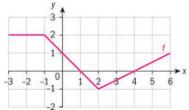
one more page

Reflect What is the relationship between the graphs of y = f(x) and y = f(-x)?

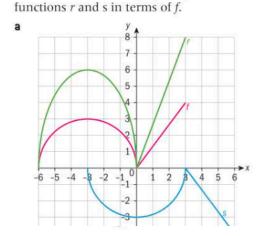
The graph of y = f(qx) is a horizontal stretch or compression of the graph of y = f(x). For which values of q is the transformation a stretch rather than a compression?

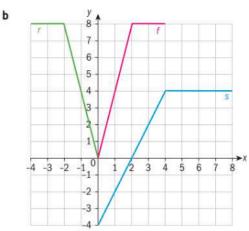
Exercise 3K

1 The graph of y = f(x), where $-3 \le x \le 6$, is shown. Copy the graph of f and draw these functions on the same axes.



2 The graphs of functions *r* and *s* are transformation of the graph of *f*. Find the





- $\mathbf{a} \quad g(x) = f(-x)$
- **b** g(x) = -f(x)
- $\mathbf{c} \quad g(x) = f(2x)$
- $\mathbf{d} \quad g(x) = 3f(x)$
- **e** g(x) = f(x+6)
- **f** g(x) = f(x) 3

- **3** The diagram shows the graph of y = f(x), for
 - **a** Write down the range of f.

Let g(x) = f(-x).

- **b** Sketch the graph of *g*.
- **c** Write down the domain of *g*.

The graph of h can be obtained by a vertical translation of the graph of g. The range of h is $-4 \le y \le 2$.

- **d** Find the equation for *h* in terms of *g*.
- **e** Find the equation for *h* in terms of *f*.

