
Pluralization on compact numbers
Robin Leroy (egg.robin.leroy@gmail.com)

Mark Davis (mark.edward.davis@gmail.com)

Overview
ICU and CLDR provide a way to display numbers in a (short or long) compact decimal
format, e.g., 3 141 592 ↦ “3.1M”, “3.1 million”. However, there is no explicit support for
pluralization on a number formatted in that way. That is, there may be grammatical
differences in a message based on whether a number is written as 3.1M vs 3,100,000.

English tends to be simple, e.g.,

{number_of_views, plural,

=0 {No views}

one {# view}

other {# views}} ↦ “3.1M views”, “3.1 million views”.

It turns out that naïvely using the displayed value to select the plural case (which is
already nontrivial with ICU, see Annex B) fails in many Romance languages, including
French, Italian, and Spanish.

As the use of compact number formatting in numeric placeholders has become more
commonplace (see, for instance, view counts on the YouTube homepage), this issue
has become more visible.

This document proposes a solution involving:

● A change in UTS #35, CLDR, and ICU to add a new plural operand 𝑐, which
records suppressed exponents, eg for “2.3 M”, the value of 𝑐 would be 6.

● An additional plural category in CLDR for the affected languages, using the
new variable. Example for fr.xml:

○ <pluralRule count="many">c = 0 and i % 1000000 = 0 and v = 0

or c != 0 .. 5</pluralRule>

● An enhanced API in ICU to use in cases like compact number formatting. The
code for ICU should be done before adding the operand/rules to CLDR, so that it
can be used in the CLDR code for testing and examples.

☡ Note that there is pluralisation within the compact decimal format, so that the
format is 1 million but 2 millions in French. This pluralization (with numeric values 1
and 2 in these examples) is irrelevant to, and should not be confused with, the issue at
hand, which is pluralization on the compact number (e.g. “1 million views”).

☡ Note also that while the notation 1.2c6 resembles scientific notation, these
pluralization rules do not apply to numbers in scientific notation, which is outside the
scope of this proposal. For instance we have 1,2 × 10⁶ (*de) chats, the new many case

mailto:egg.robin.leroy@gmail.com
mailto:mark.edward.davis@gmail.com

would be incorrect. An earlier version of this document called the new operand 𝑒, and
used the 1.2e6 to represent, e.g., “1.2 million”. This was changed to 𝑐 in order to
reduce the risk of confusion.

Notation
This document uses a prefix asterisk “*” to denote intentional *grammaticals errors
used for demonstrative purposes, which can be combined with parentheses to
indicate required or proscribed words:

— the Romans go *(to) the house — the “to” is required
— the Romans go (*to) home — the “to” is forbidden

Problem Cases
Consider the following French translation of the aforementioned view count message,
{number_of_views, plural, =0 {Aucune vue} one {# vue} other {# vues}}.

A French speaker will immediately recognize that substituting the number 2 000 000
in compact long format (2 millions) in the other case # vues, yielding

*2 millions vues,
is glaringly incorrect.

The correct form requires a preposition, 2 millions *(de) vues. The same applies to
Italian 2 milioni *(di) visualizzazioni, and Spanish 2 millones *(de) vistas, and likely to
Portuguese 2 milhões *(de) visualizações— there may be other languages with similar
issues.

In fact, the compact short form also has this property, as it often is an abbreviation of
the long form, e.g., Italian 2 Mln *(di) visualizzazioni, Catalan 2M *(de) visualitzacions,
etc.

The same applies in French to the word for 1 000 000 000, and higher powers of 1 000,
so that, at first glance, this is easily solved within the current framework of UTS #35,
Part 3, Section 5, by adding a new plural case with the following rule to affected
Romance languages:

<pluralRule count="many">n mod 1000000 = 0</pluralRule>

Indeed, French requires the preposition even when the number is written in digits,
1 000 000 000 *(de) vues. This is somewhat similar to the situation of the Romanian
plural rules.

The above all works within the framework of the existing standards. Unfortunately,
things get trickier with fractional millions.

Indeed, we have:

https://en.wikipedia.org/wiki/Asterisk#Ungrammaticality
https://fr.wikipedia.org/wiki/Million#Orthographe_et_grammaire
http://www.unicode.org/cldr/charts/latest/supplemental/language_plural_rules.html#ro
http://www.unicode.org/cldr/charts/latest/supplemental/language_plural_rules.html#ro

— 2,3 millions *(de) vues (read deux virgule trois millions de vues, the preposition
is required), but

— 2 300 000 (*de) vues (read deux millions trois-cent-mille vues, the preposition is
proscribed).

For non-integer numbers in non-compact decimal form, the value does not solely
depend on the displayed numeric value (plural operands 𝑛, 𝑖, 𝑓, 𝑤), and quantities
derived from insignificant 0s (plural operands 𝑣, 𝑡) are needed for plural case
selection. Similarly, it follows from the above example that numbers in compact
decimal form require information beyond the numeric value being displayed.

Unicode Technical Standard #35, revision 51
Plural rules currently support only pluralization on numbers of the form
⟨digits⟩[,⟨digits⟩], with quantities 𝑛, 𝑖, 𝑣, 𝑤, 𝑓, and 𝑡 (plural operands) derived from that
form being used in the plural rules; see UTS #35 Part 3, Section 5.

Exponent
The compact decimal formats make this more complicated; indeed, a number in
compact decimal format is not in the form ⟨digits⟩[,⟨digits⟩], even disregarding
grouping marks.

To solve the problem, a new variable is proposed for the plural category rules.

Let 𝑐 be the exponent of the power of 10 expressed by the compact decimal format,
i.e., 3 for “thousands”, 6 for “millions”, etc., or 0 if a non-compact format is used (the
introduction of this plural operand would be an amendment to UTS #35 Part 3,
Section 5.1.1 “Operands”).

The French rule for the new many case would then be

<pluralRule count="many">c = 0 and i % 1000000 = 0 and v = 0 or

c != 0 .. 5</pluralRule>

and the French translation of the message would be

{number_of_views, plural,

=0 {Aucune vue}

one {# vue}

many {# de vues}

other {# vues}}

with similar rules for the other affected Romance languages.

https://www.unicode.org/reports/tr35/tr35-51/tr35-numbers.html#Operands

The following table summarizes the values of the relevant plural operands for some
interesting formatted numbers. Since we are considering only integers, 𝑖=𝑛, and 𝑣, 𝑤, 𝑓,
and 𝑡 are 0.

Formatted number 𝑛 𝑐

1 284 043 1 284 043 0

1 200 000 1 200 000 0

1,2 million 1 200 000 6

1,2 M 1 200 000 6

1 000 000 1 000 000 0

1 million 1 000 000 6

1 M 1 000 000 6

Annex A: Outline of changes and usage
We will now summarize the proposed changes and their effect on the standard, on the
libraries, and to the data per language. Additions are underlined and deletions struck
through.

Unicode Technical Standard #35, Part 3, Section 5.1
In the first paragraph,

The xml value for each pluralRule is a condition with a boolean result that
specifies whether that rule (i.e. that plural form) applies to a given numeric
value n, where n can be expressed as a decimal fraction or with compact
decimal formatting, denoted by scientific notation in the syntax, e.g., “1.2c6”
for “1.2M”. Clients of CLDR may express all the rules for a locale using the
following syntax:

In the syntax,

samples = ('@integer' sampleList)?

('@decimal' sampleList)?

('@compact' sampleList)?

operand = 'n' | 'i' | 'f' | 't' | 'v' | 'w' | 'c'

decimalValue = value ('.' value)?('c' value)?

In 5.1.1 “Operands”, in the table “Plural Operand Meanings”, amend the “n” row and
append a “c” row, as follows:

Symbol Value

n absolute value of the source number (integer, and decimals, and
exponent in compact decimal format).

⋮ ⋮

c exponent of the power of 10 used in compact decimal formatting.

In 5.1.1 “Operands”, in the table “Plural Operand Examples”, add a “c” column with 0s
in the existing rows, and add three rows as follows.

n i v w f t c

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0

1200000 1200000 0 0 0 0 0

1.2c6 1200000 0 0 0 0 6

123c6 123000000 0 0 0 0 6

In 5.1.2 “Relations”,

The values of relations are defined according to the operand as follows.
Importantly, the results may depend on the visible decimals in the source,
including trailing zeros, or on the compact decimal exponent.

In 5.1.3 “Samples”,

Samples are provided if sample indicator (@integer, @compact, or @decimal)
is present on any rule. (CLDR always provides samples.)

Where samples are provided, the absence of one of the sample indicators
indicates that no numeric values can satisfy that rule. For example, the rule "i =
1 and v = 0" can only have integer samples, so @decimal must not occur; if c=0
then there can be no compact samples, so @compact must not occur.

The sampleRanges have a special notation: start~end. The start and end
values must have the same number of decimal digits; if they are compact
values, they must have the same exponent. The range encompasses all and
only values those value v where start ≤ v ≤ end, and where v has the same
number of decimal places as start and end.

Samples must indicate whether they are infinite or not. The '…' marker must be
present if and only infinitely many values (integer or decimal) can satisfy the
rule. If a set is not infinite, it must list all the possible values.

Rules Comments

@integer 1, 3~5 1, 3, 4, 5.

@integer 3~5, 103~105, … Infinite set: 3, 4, 5, 103, 104, 105, …

@decimal 1.3~1.5, 1.03~1.05, … Infinite set: 1.3, 1.4, 1.5, 1.03, 1.04, 1.05, …

@compact 1c6~3c6, 1.0c6~1.2c6, … Infinite set: 1c6, 2c6, 3c6, 1.0c6, 1.1c6, 1.2c6, …

In determining whether a set of samples is infinite, leading zero integer digits,
compact decimal exponent, and trailing zero decimals are not significant. Thus
"i = 1000 and f = 0" is satisfied by 01000, 1000, 1000.0, 1000.00, 1000.000, 1c3,
etc. but is still considered finite.

ICU changes
We need to have a Datatype that we can use to pass a number for formatting and
selection, one that represents something logically like 123.450c9, with (a) specified
digits, (b) where the decimal goes, and (c) what the exponent is.

The best choice for how to express this will be decided via consultation with Shane
and other interested parties on the ICU team. This could either take the form of an
enhanced FormattedNumber (but with one or more constructors to pass in the
exponent), or by introducing a DecimalFloat, a type equivalent to a BigDecimal

together with an integer exponent, i.e., a representation of the decimalValue as
amended above, with an exponent in additional to the integer and fractional parts.

Introduce FormattedNumber::displayedValue, the Datatype corresponding to the
value of FormattedNumber::toString, such that we have the following
correspondence:

toString() displayedValue()

1,284,043 1284043

1,200,000 1200000

1.2 million 1.2c6

11.2M 11.2c6

1,000,000 1000000

1 million 1c6

1 thousand 1c3

1M 1c6

234.5 million 234.5c6

If we choose to use a new Datatype, add PluralRules::select(DecimalFloat), a
pluralization selection function that implements plural selection as amended (with 𝑐
rules). Otherwise, make the PluralRules::select(FormattedNumber) handle the 𝑐 case.

We can now consider examples of the result of pluralized message formatting using
plural_rules.select(formatted_number.displayedValue()) for case selection on
the new plural rules, in some relevant languages.

CLDR changes and example usage

English
Plural rules are unchanged.

Message:

{number_of_views, plural, =0 {No views} one {# view} other {# views}}

Plural case selection and message formatting:

Formatted number Plural case Reason Message

1,284,043 other 𝑖≠1 1,284,043 views

1,200,000 other 𝑖≠1 1,200,000 views

1.2 million other 𝑖≠1 1.2 million views

1.2M other 𝑖≠1 1.2M views

1,000,000 other 𝑖≠1 1,000,000 views

1 million other 𝑖≠1 1 million views

1 thousand other 𝑖≠1 1 thousand views

1M other 𝑖≠1 1M views

234.5 million other 𝑖≠1 234.5M views

French
Plural rules:

<pluralRule count="one">

i = 0,1

@integer 0, 1

@decimal 0.0~1.5

</pluralRule>

<pluralRule count="many">

c = 0 and i % 1000000 = 0 and v = 0 or c != 0 .. 5

@integer 1000000, 2000000, 10000000, 100000000, 1000000000, …
@compact 1c6~9c6, 1.0c6~1.9c6, 1c9~9c9, …

</pluralRule>

<pluralRule count="other">

@integer 2~17, 100, 1000, 10000, 100000, 1000000, …
@decimal 2.0~3.5, 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0, …
@compact 1c3~9c3, …

</pluralRule>

Message:

{number_of_views, plural,

=0 {Aucune vue}

one {# vue}

many {# de vues}

other {# vues}}

Plural case selection and message formatting:

Formatted
number

Plural
case Reason Message

1,284,043 other 𝑖∉{0,1}; 𝑖 mod 1 000 000 ≠ 0 and 𝑐∈[0,5] 1 284 043 vues

1 200 000 other 𝑖∉{0,1}; 𝑖 mod 1 000 000 ≠ 0 and 𝑐∈[0,5] 1 200 000 vues

1,2 million many 𝑖∉{0,1}; 𝑐∉[0,5] 1,2 million de vues

1,2 M many 𝑖∉{0,1}; 𝑐∉[0,5] 1,2M de vues

1 000 000 many 𝑖∉{0,1}; 𝑐 = 𝑖 mod 1 000 000 = 𝑣 = 0 1 000 000 de vues

1 million many 𝑖∉{0,1}; 𝑐∉[0,5] 1 million de vues

mille1 other 𝑖∉{0,1}; 𝑖 mod 1 000 000 ≠ 0 and 𝑐∈[0,5] mille vues

1 M many 𝑖∉{0,1}; 𝑐∉[0,5] 1 M de vues

234,5
millions many 𝑖∉{0,1}; 𝑐∉[0,5] 234.5M de vues

Italian, Spanish (Europe/Latin America), Portuguese (Europe/Latin
America), Catalan, …
Once we have the above working for French, we will generate a questionaire for
related languages to see what behavior they have. For Italian, for example, we will
figure out whether the new case applies to 1 000 000 in digits in all the other
languages; this question aside, this is similar to French, with the mille issue being

1 This requires that https://unicode.org/cldr/trac/ticket/11045 (Google issue b/116777167) be
fixed, the reason being that the current compact-long format for the one case, 1 millier, differs
from the way 1 000 would normally be read, mille, and they require different plural forms:
1 000 (*de) vues, but 1 millier *(de) vues.

https://unicode.org/cldr/trac/ticket/11045
http://b/116777167

even worse there, as the current *1 mille is outright wrong in Italian (there is no
equivalent ofmillier).

Slavic and other plural rules
For practical purposes, the existing rules should work fine in slavic languages: 1 200
has the same plural case as 1 000, and thus pluralizing 1,2 тыс as 1 200 is correct. In
theory however, one could use the compact decimal format with four significant
digits, thus 1,243 тыс for 1 243; the pluralization would then be incorrect in the
absence of an 𝑐 rule, the correct case being few for 1 243, but many for 1.243c3.

In order to avoid issues of that kind (and possibly likelier ones that we have not
thought of), it may be best to add a “default” 𝑐 rule to all languages

<pluralRule count="appropriate_case">

c != 0

</pluralRule>

Where appropriate_case is the current plural case for the powers of 10 used by
compact decimal formatting (if the plural case differs between the relevant powers of
10 for some language, that language likely needs more specialized 𝑐 rules).

This effectively means ‘treat “12.34 million” as “1 million” for the purposes of
pluralization’.

Annex B: displayed value in current ICU
In the foregoing treatment of pluralization on compact number, our baseline was
pluralization based on the displayed value, e.g., pluralization based on 1 200 000 when
the number 1 284 001 is shown as “1.2M”, regardless of the hidden digits.

An even more naïve approach would be to choose the plural case based on the
(unrounded) underlying value, i.e., to pluralize on 1 284 001 when showing “1.2M”.

Rosa, rosa, rosam…
Cursory knowledge of pluralization in Slavic languages is sufficient to realize that this
approach is flawed. For instance, in Russian, the plural case is few for 1 284 043, it is2

one for 1 284 001, and it is many for 1 284 000, yet all three get formatted as 1,2 млн,3

for which the correct plural case is many.

With plural selection on the unrounded number, this leads to effectively arbitrary
selection depending on invisible digits.

This issue occurred at YouTube, whose view count display would sample the4

declension of the word “view” seemingly at random, haphazardly showing
просмотров, просмотр, and просмотра, as can be seen on a screenshot from March
2018 of the homepage in Russian.

ICU support
Unfortunately, ICU provides poor support for obtaining the value 1 200 000 when
formatting a number as 1,2 млн.

In ICU4J, FormattedNumber#toBigDecimal() yields the BigDecimal m = 1.2 when an
underlying value k gets formatted as 1,2 млн, from which 1 200 000 can be obtained
as m.movePointRight(floor(log10(k/m))). there is no equivalent of toBigDecimal in
ICU4C. In C++, the easiest way to compute the displayed value 1 200 000 in this
situation ends up being, horresco referens, counting the number of code points with
General_Category Nd in the string formatted by CompactDecimalFormat.5

The function FormattedNumber::displayedValue proposed in Annex A provides a
superset of this functionality, obviating the need for digit-counting.

5 Decimal_Number, see unicode.org/reports/tr44/#General_Category_Values.

4 YouTube has since worked around the issue; the homepage now consistently shows
просмотров for view counts with compact numbers.

3 www.unicode.org/cldr/charts/34/verify/numbers/ru.html.

2 www.unicode.org/cldr/charts/latest/supplemental/language_plural_rules.html#ru.

https://avatars.mds.yandex.net/get-pdb/1641653/b37084e7-1105-4f74-bce3-b5909273dca2/orig
https://avatars.mds.yandex.net/get-pdb/1641653/b37084e7-1105-4f74-bce3-b5909273dca2/orig
http://icu-project.org/apiref/icu4j/com/ibm/icu/number/FormattedNumber.html#toBigDecimal--
http://unicode.org/reports/tr44/#General_Category_Values
https://www.unicode.org/cldr/charts/34/verify/numbers/ru.html
http://www.unicode.org/cldr/charts/latest/supplemental/language_plural_rules.html#ru

Limitations
This solution does not purport to handle all potential issues regarding compact
number formatting.

Applicability to the compact short format
This approach continues to assume that the plural case of the compact short “1.2M” is
the same as that of the compact long “1.2 million” in all languages.

In many cases, the compact short format is an abbreviated version of the compact
long, e.g., Russian тыс. for тысяча, FrenchM andMd formillion andmilliard, Italian
Mln and Mrd (formerly Mld) for millione and milliardi, etc. In those cases,
abbreviation does not alter pluralization, i.e., since we have 1 millione *(di)
visualizzazioni, we also have 1 Mln *(di) visualizzazioni, so that no special treatment is
needed for the compact short format.

Within the French, Italian, and Spanish data, only the French compact short thousand
abbreviation (the SI prefix k, oddly not used as a prefix) fails to fit the “abbreviated
long” pattern; since thousands do not use the new plural case anyway, this is not a
concern.

Context-dependent formatting
This approach also does not (purport to) solve the inflection issue. Since the problem
that we are trying to solve is placeholder substitution (with plural case selection) in a
string that supports both a compact and a non-compact number, the formatted
number does not depend on the surrounding message.

In other words, this approach would not work in a language and message where the
form of the word “million” changes when inserted into the message. This is not the
case in the aforementioned Romance languages.

In a language with declension, and in a message where the number does not occur in
the nominative, e.g.,
{number_of_cats, plural, one {I see a cat} other {I see # cats}},
this approach would fail in Russian with the compact-long form, Я вижу тысячу
кошек, with the accusativeтысячу rather than the nominativeтысяча.

However, the compact short form (being abbreviated) does not generally change with
case, and even where the compact long form is used, most usages are in the
nominative (e.g., “50 million views”, rather than “share with 50 million people”).

We consider declension of compact numbers to be out of scope.

