
Computational Reproducibility

Technology has greatly improved how scientists work. The internet has made it easy to
share information – including data, materials, and code – and new software and online
platforms have emerged to facilitate the workflow of scientists. One important goal of a
scientific workflow is to make sure that the final work you publish is computationally
reproducible. Computational reproducibilitymeans that when you use the same
data as in the published article, you can reproduce the same results. We could
consider this a minimum standard of any workflow. However, meeting this standard
requires training. When I was a Ph. D. student, we had a problem known as ‘data rot’.
When I submitted an article for publication and received the reviews after several
months, I could not always easily reproduce my own analyses. Sometimes, ‘data rot’ had
eaten away at either my data or my analysis code, and it no longer worked.

Obviously, there is no such thing as ‘data rot’. The problem was that I had not recorded
the exact steps I used to analyze my data, and I could therefore not reproduce my data
analysis. In this assignment, you will learn what a computationally reproducible
workflow looks like, and how you can share computationally reproducible results with
your published paper. The goal of this assignment is for someone else (or for yourself,
one year from now) to be able to take your data, run your code, and get exactly the
same results as you reported in your work.

Although there are multiple ways to achieve a fully reproducible workflow, in this
assignment I will introduce you to what I believe is one emerging standard for a fully
reproducible workflow. You will set up a GitHub account, create a new GitHub
repository, link this repository to RStudio, and learn how to use version control to save
the history of all changes you've made while working on your files. This will allow you to
use a version control system as you are programming in R, which stores previous
versions of files. You will then create an R Markdown document, which allows you to
write a completely reproducible data analysis script (including figures), that you can
export as an HTML or PDF file (and we will briefly discuss how to create APA formatted
documents in a new R package called papaja). You will then learn how to archive your
GitHub repository – data, code, and any other files – on the Open Science Framework,
and link to these files in the final version of your manuscript. Finally, we will take a look
at Code Ocean, a novel online platform that allows you to share computationally
reproducible code online, making it easy for others to run your code. You will not learn
how to become an experienced programmer in this assignment – that would require
substantially more time. But you will experience what a fully reproducible workflow
looks like. After this assignment, you will still need a lot of training. But improving your
programming skills and learning a fully reproducible workflow will be worth it!

Getting software and code to work on your system might be a challenge, and
regrettably, I can’t offer ICT support. Differences between Windows, Linux, and Apple
operating systems means that you might need to search the internet for solutions to
problems you run into. Software will update, packages update, and different people

1

might encounter different errors at different times. For this reason, this assignment
will live online in a google doc, and I would appreciate it if you could provide
feedback about any errors you experience.

If you get stuck, you can check what you did against what the assignment should look
like by visiting the public versions of part of this assignment:

GitHub repository: https://github.com/Lakens/reproducibility_assignment,

OSF project: https://osf.io/jky8s/

Code Ocean: Capsule

Step 1: Setting up a GitHub repository

If you haven’t created a GitHub account before, do so now. Go to https://github.com/
and create an account. Git is a version control system for tracking changes in computer
files and coordinating work on those files among multiple people. GitHub is a
web-based hosting service for version control using Git. Git is free open source
software. GitHub is a company that allows people to easily use Git. Other ways to use
Git exist, but GitHub is currently the most widely used (and it’s free).

Once you have an account, you can create a new repository. A repository is a collection
of folders and files that make up your project. In the top-right of the GitHub page, click
the + symbol, and select ‘New repository’ from the dropdown menu.

The first thing to do is name your repository. When it comes to naming folders and files,
it is important to follow best practices for file naming:

● Keep names short (because you will have to type less), but clear (so others will
understand the names). "data_analysis_project" is easier to understand for
others than "dat_an_prjct".

● Do not use spaces (spaces in variable names make it more difficult to refer to
variables in your code). Options include:

o Points: this.is.a.file.R (recommended in most code style guides)
o Underscore: this_is_a_file.R (this is my personal favorite despite of what

style guides say)
o Camelcase: ThisIsAFile.R
o Dashes: this-is-a-file.R
o No spaces: thisisafile.R

2

https://github.com/Lakens/reproducibility_assignment
https://osf.io/jky8s/
https://codeocean.com/2018/06/21/reproducibility-assignment-colon-stroop
https://github.com/

● If you want to number multiple sequential files, do not use 1_start, 2_end, but
use leading zeros whenever you might number more than 10 files, so for
example 01, 02, etc., or 001, 002, etc.

● Do not use special characters such as $#&*{}: in file names.
● If you want to use date information, use the YYYYMMDD format.

If you are interested in using a consistent style when writing code, you might want to
look at code style guides (such as Google's R Style guide).

Let’s name our repository: reproducibility_assignment

You can add a short description (e.g., ‘This is an assignment to practice an open and
reproducible data analysis workflow’). You can make the repository public or keep it
private (if you use the academic or paid version- if you are a researcher you can get a
free developer plan).

Click the checkbox before ‘Initialize this repository with a README’. A readme file is a
useful way to provide a more detailed description of your project, that will be visible
when people visit your GitHub project page.

You will also be asked if you want to add .gitignore file (you can ignore this for now) and
a license. Adding a license is a way to easily communicate how other people can use the
data, code, and materials that you will share in your GitHub repository. Note that not
making a choice about a license, is also a choice: if you do not add a license your work is
under exclusive copyright by default. You can learn more about licenses, but for now, a
simple choice is the MIT license, which puts only very limited restrictions on reuse, but
more restrictive licenses also exist. You can select the choice of license (such as the MIT
license) from the dropdown menu. It lets people do anything they want with your code
as long as they provide attribution back to you and don’t hold you liable. There are also
creative commons licenses that you can use when you are sharing something else than
software, such as research materials (for example, this educational material is shared
under a CC-BY-NC-SA 4.0 license).

You are now ready to create the repository. Click

It might feel unintuitive, but it is important to remember that you are not expected to
directly interact with your new GitHub repository through the GitHub website. The
repository page will give you information about the contents of the repository, and the
history of the files in the repository, but it is not that easy to add files or download files
directly through the website. You will use other software to interact with your GitHub
repository.

3

https://google.github.io/styleguide/Rguide.xml
https://help.github.com/articles/applying-for-an-academic-research-discount/#applying-for-a-free-developer-plan-for-your-personal-account
https://choosealicense.com/okay%20Scott
https://creativecommons.org/choose/

Step 2: Cloning your GitHub repository into RStudio

To allow RStudio to work together with GitHub, you first need to set up the system. A
detailed explanation for different operating systems is provided here. First, download
Git: https://git-scm.com/downloads for your operating system, and install it (you can
accept all defaults during the installation process). If you haven’t done so already,
download and install R: https://cran.r-project.org/, and download and install the free
version of RStudio (scroll down for the installers):
https://www.rstudio.com/products/rstudio/download/.

In RStudio, go to Tools > Global Options, and select the Git/SVN menu option.

Check if the Git executable has been found automatically. If not, you will need to click
the ‘ Browse…’ button and find it manually.

Click the ‘Create RSA Key…’ button. A window will appear, and you can click 'Create':

4

https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://git-scm.com/downloads
https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/

A new window will open:

You can close the window. Click the blue hyperlink ‘View public key’. A window will
appear, telling you that you can use CTRL+C to copy the key. Do so.

Go to GitHub, and got to settings and then select the option SSH and GPG keys:

5

Click ‘New SSH key’

Enter a name (e.g., RStudio) and paste the key in the correct window. Click ‘Add SSH
Key’. This will allow you to push code to GitHub repositories without having to enter
your GitHub login name and password every time. You are now ready to create a
version controlled project in RStudio.

In RStudio, go to File>New Project:

You will see three choices. Choose the ‘Version Control’ option:

6

Choose the ‘Git’ option:

We will be cloning the online GitHub repository you created, which will create a local
copy of all files. You can copy-paste the URL from your GitHub repository (e.g.,
https://github.com/Lakens/reproducibility_assignment). If you copy-paste this URL in the
top field, this will automatically create a Project directory name that is similar to the
name you gave your project on GitHub. You can select a folder on your computer by
clicking the ‘Browse’ button to indicate where you want to save the local copy of your
repository.

7

https://github.com/Lakens/reproducibility_assignment

Click ‘Create Project’. R will quickly download some files, and open the new project. You
will see that the project creation was successful because the ‘Files’ tab in the RStudio
interface shows that you have downloaded some files from our GitHub repository (the
README.md and LICENSE files). RStudio also created a reproducibility_assignment.Rproj
file and a .gitignore file. The project file is used to store information about the project,
and that is required to use GitHub.

We can also see this is a version control project in the top right of the interface, where
there is now a ‘Git’ tab. If you click it, you will see:

8

We see a range of buttons, such as the Diff, Commit, Pull, and Push buttons. These are
be used to interact with GitHub. Many computer programmers interact with GitHub
through the command line, such as:

$ git commit -m "This is a git commit message"

Learning to use git through the command line is not needed for most people who just
want basic version control. In this assignment I will explain a reproducible workflow that
does not require you to use the command line, because everything can be done using
menu options in RStudio. To make the analysis code reproducible, we will use a R
Markdown file to analyze our Stroop data.

Step 3: Creating an R Markdown file

R Markdown files provide a way to save and execute code, while also allowing you to
create reports of your data analysis (and even full scientific articles that you can submit
for publication!). A complete introduction to R Markdown is available here, and a cheat
sheet is available here. The main strength of R Markdown is that it allows you to create a
fully reproducible document. This means that you can compile the document into a
HTML file or PDF document that people can read like normal text. The R Markdown file
also contains code that performs the analyses each time the document is compiled.
Instead of copy-pasting values from your analysis software into a word document, you
combine code and text to create a manuscript where every number or figure can be
traced back to the exact code that generated it.

You can still make errors in the analysis if you use R Markdown files. The important
difference is that your programming errors will be stored in the R Markdown document.
Because the document is reproducible, all errors are reproducible as well. It is
impossible to prevent all errors, but it is possible to make them reproducible. This will
make it easier to identify and correct errors. I understand that you might worry about
others seeing your errors if you allow them to see exactly what you have done. But we
all make mistakes, and it is important for science to be able to identify and correct these
mistakes. An important aspect of moving to a more reproducible workflow is learning to
accept that we all make errors (and we should give credit to the people who actively
try to correct their mistakes).

Let’s start by creating a new R Markdown document in RStudio by clicking New File > R
Markdown…

If this is the first time you are using R Markdown, you will be asked to install packages R
requires. RStudio knows which packages it needs to start using R Markdown, so install
all packages that are recommended.

9

https://rmarkdown.rstudio.com/lesson-1.html
https://www.rstudio.com/wp-content/uploads/2016/03/rmarkdown-cheatsheet-2.0.pdf

This gives you a new window where you can specify the title of your RMarkdown
document, and an author name. Enter the title ‘Main Analysis’, and feel free to change
the Author subfield in anything you prefer. RMarkdown files can be converted (or
‘knitted’) into a html file, a PDF document, or a word document. To generate PDF files
you need to install MiKTex which we won’t do for this assignment (a good tutorial how
to install MiKTeX is available here). So leave the default output format to HTML

Let’s start by saving the new file: Click CTRL+S, and save the file under the name
‘main_analysis.Rmd’. Because you are working in an RStudio project, the file will
automatically be saved in the same folder as all other files in this project. If you look at

10

https://medium.com/@sorenlind/create-pdf-reports-using-r-r-markdown-latex-and-knitr-on-windows-10-952b0c48bfa9
https://medium.com/@sorenlind/create-pdf-reports-using-r-r-markdown-latex-and-knitr-on-windows-10-952b0c48bfa9

the files tab in the bottom right pane, you will see the new file appear. Now let’s take a
look at the R Markdown file.

The R Markdown file by default includes several sections to get you started. First, there
is a header section. In the header section, there is code that determines how the final
document is rendered. This section is sensitive, in the sense that it needs to be
programmed exactly right – including spaces and tabs – so it is not recommended to
change it too much without looking up detailed documentation on how to do so. An R
Markdown file is fed to knitr software, which creates a normal markdown file, which
then uses pandoc software to generate the specific document you requested. All of this
happens automatically.

The header is followed by a set-up section where you can define general options for the
entire file. Then, we see the two main sections Markdown code and R Code.Markdown
code is a markup language in plain text formatting syntax that can be easily converted
into HTML or other formats. R code is used to analyze data or create figures. To see the

final result of this code, hit the Knit button in the toolbar at the top of the pane.

A new window will appear that allows you to view the HTML file that was created. You
see the formatted HTML document that combined both text and the output of R code.

11

Close the window – we are now ready to analyze our data.

Step 4: Reproducible Data Analysis in RStudio

Delete all text from ## R Markdown on down – only keep the header and set-up
sections of the default document.

First, we need to analyze some data. We will download this data directly from an
existing GitHub repository I created. Students in an introduction to psychology course
performed a simple Stroop experiment, and named the colors in a congruent trial (e.g.,
the word 'red' written in a red font) and incongruent trial (e.g., the word 'red' written in a
green font). The time they took to name all words was recorded in seconds (e.g., 21.3

12

seconds) for both the congruent and incongruent trial. There are four columns in the
dataset:

● Participant Number
● Response Time for Congruent Stimuli
● Response Time for Incongruent Stimuli
● Year of Data Collection

Click the button ‘+C Insert’ to insert code – a drop down menu will be visible. Select R.

In the R Markdown file, you’ll see a new section of R code that start with ```{r} and end
with ```. You can also just create these sections be manually typing in these two lines.

Copy-paste the code below – make sure to get all the text – and paste in between the
start line and the end line of the R code chunk. Note that there are 2 lines of code
(starting with stroop_data and write_table) and there are no hard returns or breaks –
when copy-pasting these lines of code, you might need to correct this depending on
your device.

stroop_data <-
read.table("https://raw.githubusercontent.com/Lakens/Stroop/master/stroop.
txt", sep = "\t", header = TRUE)

write.table(stroop_data, file = "stroop.csv", quote=F, row.names=F)

After copy-pasting the text, the code should look like the screenshot below (again, be
aware of any difficulties when copy-pasting text from a PDF file into RStudio):

This code creates a data.frame called ‘stroop_data” that contains data, and then saves

this data in a .csv file called ‘stroop.csv’. Click the Knit button: to look at the
document. You should see something like:

13

This might not look very impressive – but the real action is in the file pane in the bottom
right part of the screen. Close the window showing the HTML output and look at the file
pane. You should now see a bunch of files:

One file is stroop.csv – this is our data file of the Stroop data, that we downloaded from
the internet, and saved to our project folder, using R code.

There is really no need to keep downloading the file from the internet when we can also
just load it from the local folder. So let’s change the code. We won’t completely delete
this code – we will just comment it out by placing a # in front of it. This way, we can still
remember where we downloaded the code from, but we won’t use the code.

Because it is always important to provide comments in the code you write, add the
explanation:

#run only once to download the data

above the line where we downloaded the code. Then, select the lines of code in the
chunk, and click CTRL+SHIFT+C (or COMMAND+SHIFT+C on a mac). This should add # in
front of all lines, making it comments instead of code that is executed every time. You
should end up with:

14

Now we need to add a line of code that we will run, and with which we will load the
stroop.csv dataset from the local folder. Underneath the last commented out line of
code, but within the R code block, add:

stroop_data <- read.csv("stroop.csv", sep = " ", header = TRUE)

Click CTRL+S to save the file. Knit the file. We see:

Close the HTML file. We’ve done quite a lot of work. It would be a shame if this work was
lost. So this seems to be the perfect time to save a version of our R Markdown file, not
just locally, but also on GitHub.

15

Step 5: Committing and Pushing to GitHub

It is time to store our changes in the cloud, on GitHub. This process takes two steps.
First, we record the changes to the repository. This is called a ‘commit’. You don’t need
an internet connection to ‘commit’ files because we are just recording the changes
locally. However, then you want to make sure that the updated files and recorded
changes are also stored on GitHub. This will require you to push the files to GitHub.

If we look at the Git tab in the top right pane in RStudio, we see the Commit button, the
Push button, and a bunch of files. The status of these files is indicated by two question
marks in yellow. These question marks indicate these files are not yet tracked by
GitHub. Let’s change this.

Click the commit button. A menu opens. You can choose to ‘stage’ the changes that have
been made (this prepares the files for the commit, and is an intermediate step that
provides some detailed possibilities that you typically do not need). You can do this in
several ways, such as double clicking each file, or selecting all files and clicking ‘Enter’.
When staging all files, the yellow question marks change to a green ‘A’ symbol. Every
commit should be accompanied by a commit message where you describe which
changes you have made. You can type in an informative message about what you have
changed in the code (the first time, 'initial commit' is often used). The menu should look
like the screenshot below:

16

Now we are ready to commit these changes. Click the ‘Commit’ button. A new window
opens that shows all changes that have been committed . We see that 5 files have1

changed. You can close this window and close the previous menu.

RStudio now reminds you that there is a difference between the local copy of your
repository, and the remote version of the repository on GitHub. In the Git tab you see a
reminder: “Your branch is ahead of ‘origin/master’ by 1 commit.”.

This means the last commit is not yet synchronized with the remote repository,
something that can be solved by ‘pushing’ the changes to the remote repository. Simply
click the push button: . Another pop-up window appears:2

2 It is possible that you still need to enter your GitHub username and password at this point

1 One possible error at this point is GitHub asking you who you are. A solution (which requires using the
command line: http://www.thecreativedev.com/solution-github-please-tell-me-who-you-are-error/

17

http://www.thecreativedev.com/solution-github-please-tell-me-who-you-are-error/

This window informs us there were no errors, and we successfully pushed the changes
to the remote version of the repository. You can close this window.

You can check that you successfully pushed all files to GitHub by visiting the GitHub
page for your repository in the browser. You should see something like:

Congratulations on your first GitHub push! If you want to read a more extensive
introduction to Git, you can read this tutorial paper by Matt Vuorre and James P. Curley.

Step 6: Reproducible Data Analysis

So far, we have only read in data. The goal of an R Markdown file is to create a
manuscript that contains a fully reproducible data analysis. In this assignment, I
cannot teach you how to analyze data in R (but I can highly recommend learning it –
there are plenty of excellent online resources). Instead of programming from scratch,
visit https://raw.githubusercontent.com/Lakens/Stroop/master/main_analysis.Rmd. This
is a raw text version of an R Markdown file that will analyze the Stroop data. In the
website, select all text (CTRL+A), copy it (CTRL+C). Then go to your main_analysis.Rmd
file in RStudio. Select all text (CTRL+A) and hit delete. That’s right – delete everything.
You don’t need to worry about losing anything – you have a version controlled file in
your GitHub repository, which means you can always go back to a previous version! In
the (now empty) main_analysis.Rmd file, press CTRL+V and paste all text. The file should
look like the screenshot below.

This R Markdown file does a number of things, which we will explain in detail below. For
example, it will automatically install libraries it needs, load the data, and create a report
in HTML. You can hit the Knit button, and the HTML document should load. You should
see output as in the second screenshot below.

18

https://osf.io/4yp9a/download
https://raw.githubusercontent.com/Lakens/Stroop/master/main_analysis.Rmd

19

It is important to note that none of the numbers that are in this text are static, or
copy-pasted. They are all calculated at the moment that the document is created,
directly from the raw data. If you have access to the .Rmd (R Markdown) file, you can
perfectly reproduce the reported data analysis.

Since we have made substantial changes, this is the perfect moment to commit and
push the changes to GitHub! Go to the Git tab in the top right pane. Click ‘Commit’. The
window below will open. If the main_analysis.Rmd file is selected, you will see red and
green chunks of text. These tell you what will be overwritten (red) and what is new
(green).

20

Select all files that have changed, and ‘stage’ them (for example by pressing enter). The
checkboxes in from of the files, under the ‘Staged’ column, should be checked.

Type in a commit message, such as ‘update mean analysis’ in the ‘commit message’ field.
Press the ‘Commit’ button. Close the window that pops up to inform you about the
result of the commit. Then click ‘push’. Close the window that informs you about the
push command, and close the commit window. You can always visit the GitHub
repository online and look at the full history of your document to see all changes that
have been made.

Let’s take a look at some sections of our new R Markdown document. First the header:

This sets general options for the code chunks in the R Markdown file. The echo, warning,
and message = FALSE hide the code chunks, warning messages, and other messages,
where the ‘include=true’ will make all figures appear in the text. You can set some of
these variables to TRUE, and hit Knit to see what they change. Sometimes you might
want to share the HTML file with all code visible, for example when sharing with
collaborators.

If you scroll down, you will see the introduction text, the code that generates the first
figure, and the code that performs the analyses. These variables are used in the Results
section. Let’s look at this code:

21

This section of code shows how you canmix text and R code. The start of this code is
normal text. The *M* is still normal text (the * * make the M italicized, just as further
down the ~av~ indicates these letters should be a subscript), but then you see R code. In
R Markdown you can embed R code within `r `. Any R code within the two
apostrophes will be executed. In this case, the mean of the Congruent reaction times is
calculated, and rounded to 2 digits. You can see this number in the text.

Learning to program takes time. Some things are quite tricky to program. For example,
the code:

`r ifelse(ttest_result$p.value > 0.001," = ", " < ")` `r
ifelse(ttest_result$p.value > 0.001, formatC(round(ttest_result$p.value,
digits=3), digits=3, format="f"), "0.001")`

is a lot of code to make sure the exact p-value is reported, unless this p-value is smaller
than 0.001, in which case ‘p < 0.001’ is printed. The first time you program something
like this will take a lot of time. But remember, you will be able to re-use code in the
future, and you can steal a lot of code from others! For a full introduction to Markdown,
click here.

Extra: APA formatted manuscripts in papaja

If you want to write a reproducible manuscript in APA style (common in for example
psychology) you might want to try out the R package papaja created by Frederik Aust.
Install the papaja package by following the instructions. Note that papaja is not yet on
the Comprehensive R Archive Network (CRAN), but is installed directly from GitHub
through:

install.packages("devtools")

devtools::install_github("crsh/papaja")

You need to install these packages only once (and update them whenever an update is
available). To share packages on CRAN, creators need to meet a set of criteria (e.g.,
provide good documentation), but researchers sometimes prefer to share early
versions of their packages through GitHub.

Then, create a new R Markdown document, but instead of selecting the document
option, select the ‘From Template’ option, and select the template APA article (6th

edition) provided by the papaja package.

22

https://rmarkdown.rstudio.com/articles_intro.html
https://github.com/crsh/papaja
https://github.com/crsh/papaja
https://cran.r-project.org/

You will see a template with a lot of fields to fill in, such as the title, author names and
affiliation, the author note, the abstract, etc. Papaja takes care that all this information
ends up in a nice lay-out – exactly following the APA rules. This means that if you have
installed MiKTeX, you can Knit the document to a pdf, and submit an APA formatted
document that is completely reproducible. For a tutorial covering all options in papaja,
including how to add citations, see https://crsh.github.io/papaja_man/index.html

Step 7: Organizing Your Data and Code

It is important to always organize your data and analysis files. This helps others to
quickly find the files they are looking for. In general, I recommend the TIER protocol:
https://www.projecttier.org/tier-protocol/. You can create folders and move files
through the RStudio interface (click the ‘New Folder’ button and the ‘More’ button for a
‘Move’ option). But you can also just go to the folder and create new folders and move

23

https://crsh.github.io/papaja_man/index.html
https://www.projecttier.org/tier-protocol/

files as you do normally. I’ve created a data folder that contains the stroop.csv file, and a
manuscript folder that contains the .Rmd and .html files. Push the changes to GitHub!

If you try to knit your code now, you will get an error:

The data is no longer in the same folder as our manuscript file. If you want to knit your
file, you need to tell R to move up one folder level, and then go to the Data folder:

stroop_data <- read.csv("../Data/stroop.csv", sep = " ", header = TRUE)

When you are organizing your code, take great care to make sure that any
personally identifying information in your data is stored safely. Open science is
great, but you should share data responsibly. This means that you need to ask
participants permission to share their data in the informed consent form (a useful
resource is the Research Data Management Support page of the University of Utrecht).
Whenever you collect personal data, make sure you handle this data responsibly.
Information specialists at your university library should be able to help.

24

https://www.uu.nl/en/research/research-data-management/guides/informed-consent-for-data-sharing
https://www.uu.nl/en/research/research-data-management/guides/informed-consent-for-data-sharing
https://www.uu.nl/en/research/research-data-management/guides/handling-personal-data

Step 8: Archiving Your Data and Code

Although we have shared our data and code on GitHub, when you publish your article
and want to share your data and code, it is important to remember that GitHub is not
a data repository that guarantees long-term data storage. This makes it less suitable to
link to in scientific articles, which will be around decades from now. For scientific
publications, you will want to link to a stable long-term data repository. For a list of
data repositories, click HERE. We will use the Open Science Framework in this
assignment.

Log in to the OSF at https://osf.io/ (create an account if you haven’t already done so).
Click ‘Create new project’. Give your project a name (for example ‘Stroop Reproducible
Analysis Assignment’).

It is again important to add a license to your work, also on your OSF project. Click ‘Add a
license’:

You can again choose a MIT license. You will have to fill in a year, and the copyright
holders – in this case, that is you, so fill in your name (it will appear in the license text).

Then click .

Although we could upload all our files to the OSF, we can also simply link our GitHub
project to the OSF. In the menu bar, click on ‘Add-ons’. In the list, scroll to GitHub:

25

http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories
https://osf.io/

Follow the step-by-step guide to connect to GitHub provided by the OSF
(http://help.osf.io/a/837075)

Select your repository that contains the reproducibility assignment and click ‘Save’.

Click the title of the OSF project page to go back to the main project page. You will now
see in the ‘Files’ pane that the GitHub repository is linked (see the picture below). One
nice thing of this setup is that any changes you make on GitHub is also visible in your
OSF project. Your GitHub repository is linked, which means that every change on GitHub
is directly visible.

26

http://help.osf.io/a/837075

This is a good moment to click the ‘Make Public’ button in the top right of your project.
After making the project public, people will be able to find it on the OSF. If you don’t
want to make your project public just yet, but you do want to give others access to your
files, you can create a ‘View-only’ link on the OSF. Go to ‘Contributors’ and click the
+Add button next to View-only links. For a step-by-step guide, see this tutorial.

You can use a view-only link to share access to your files only with reviewers. You can
create an anonymized view-only link to hide your contributor names in the project - this
is particularly useful in double-blind peer review (where both the reviewer and author
identities are concealed from the reviewers, and vice versa, throughout the review
process). Giving access to the files during peer review helps reviewers to evaluate your
work in as much detail as the want to. But beware: this means that people you don’t
know will have access to your files. So far, I don’t know of any negative experiences with
this process, but it is important to be aware that others will have access to your files
before they are published.

The OSF page now just links to the files on the GitHub page. It does not independently
store them. This means we do not yet have a long-term stable data storage solution.

To create a snapshot of all files in the GitHub repository that will be stored for a long
time, you have to create a Registration of you project. We will not create a Registration
of your project in this assignment. Creating a registration starts with several formal
procedures: data in linked repositories (such as GitHub) are stored by the OSF, and the
project appears in the list of registrations. You should only register when you want to
create a stable copy of your work. Below you can see an example of the files in an OSF
project that has been registered. The GitHub repository that was linked to the project
has been turned into an Archive of GitHub – this creates a stable version of the project,

27

http://help.osf.io/m/links_forks/l/524049-create-a-view-only-link-for-a-project

as it was at the moment you registered. This archive will not change. There is still a live
version of your project on the OSF.

A good moment to create a stable version of your project is when your manuscript is
accepted for publication. You can create a Registration and use the Digital Object
Identifier (DOI) to link to the code, data, and materials in the paper (you can add this link
to the manuscript as you check the proofs of your article before it is published). Note
that it is recommended to link to the materials using the DOI. The DOI is a persistent
link (meaning it will keep working) where a website address might change. A registration
does not automatically get a DOI. After creating the Registration, you need to click the
‘Create DOI’ link to create a persistent object identifier.

If you are ready to create a Registration, follow the instructions on the OSF:
http://help.osf.io/m/registrations/l/524205-register-your-project. As an example of a
Registration that was made to store all work related to one of my scientific publications,
see https://doi.org//10.17605/OSF.IO/9Z6WB (this link is itself an example of how to link
to an OSF project using a DOI).

EXTRA: Sharing Reproducible Code on Code Ocean

If you have used the workflow above to create a reproducible manuscript, you might
want to make it easy for other people to explore your data and code. People can simply
clone your GitHub repository – but this still requires them to install the software you
used, and even if they have R installed, it requires them to install the relevant packages
to analyze your data. This can potentially lead to reproducibility problems. Packages in R
update and change over time, and code that works on one machine might not run well
on another computer. Furthermore, even when shared perfectly, downloading all files

28

http://help.osf.io/m/registrations/l/524205-register-your-project
https://doi.org//10.17605/OSF.IO/9Z6WB

and getting the code up and running takes time. Several solutions exist, such as Packrat,
which is a dependency management system for R, or Docker, which can create a
container that works as a virtual machine that includes a computing environment
including all the libraries, code and data that you need to reproduce an analysis.

Here, I’ll focus on a software solution that is designed to be easier to use than Docker,
but provides many of the same benefits: Code Ocean. Code Ocean is a cloud-based
computational reproducibility platform. You can create a computing capsule that runs
online and contains all packages your code needs to run. Although Code Ocean does
not (yet) guarantee long term storage of data and code, it is an useful way to make your
reproducible code available to fellow researchers, and makes it easy for researchers (or
reviewers) to make small changes to your code and examine the results. Create a (free)
account on CodeOcean. Then create a new computing capsule:

From the list of software package, choose R:

You will see the computing capsule. On the top left you see a CODE section, on the
bottom left you see a DATA section, in the middle you can see the contents of the
highlighted code file (in this case, the README.md file), and on the right you see a
RESULTS pane (that is currently empty).

29

https://rstudio.github.io/packrat/rstudio.html
http://www.docker.com
https://codeocean.com/

We don’t need any of the default files, so in the CODE window click the … menu button
and select delete all:

Do the same for the files in the DATA window, so that we have a completely empty
container. You can import your files by just uploading them, but if you already use
GitHub, the easiest way to get your files into Code Ocean is to import them from
GitHub. Click the GitHub button in the Data pane:

A menu opens. If you made your GitHub repository public, you can just copy-paste the
address of your repository:

30

Click ‘Import Input Files’ and you will see all files from your repository:

Delete all files except the Data folder. Repeat the import process for the Code window,
but there delete all files except the Manuscript folder. The two panes now both contain
a single folder: one containing the main_analysis.Rmd file, and one containing
‘stroop.csv’.

Now we need to make some changes to make sure Code Ocean can Knit our R

Markdown file. First, click the button to create a bank file:

Call the new file run.sh:

31

Set this file as the Main Code file by clicking the ‘Actions’ dropdown menu (it will appear
when you hover over the file name), and selecting the ‘Set as Main’ option:

The symbol in front of the run.sh file will change into a house. When (after performing

the steps below) you click the big run button (), Code Ocean will execute the
file you have specified as the main file. Let’s add some code in our new file. Select the
run.sh file, and it will open in the middle pane:

Copy the code below (again, be careful when copying code from a pdf file – check the
public Code Ocean example linked on page 2 if you get stuck) and paste it in the new
run.sh file:

#!/bin/bash

Rscript -e "rmarkdown::render(input = 'Manuscript/main_analysis.Rmd', \

output_dir = '../results', clean = TRUE)"

Now, we need to set up the environment. Click

It is important to tell Code Ocean which packages and files it needs. This can be a bit
tricky to figure out (in part, this is a lack of clarity in the way R informs users which
packages it needs to run). Many R packages are already pre-installed in the
environment. For example, we don’t need to tell Code Ocean that we want to make

32

ggplot2 available – it is installed by default. However, we do need to specify that we
want to use the MBESS package, and we need to specify we need pandoc to knit our
.Rmd file to HTML. We can specify packages to run from CRAN (which contains many R
packages), install packages directly from GitHub (for example the papaja package, if you
had used this to create an APA formatted manuscript), and the apt-get installers are
used to make other software (such as pandoc) available to the Linux system the Code
Ocean container runs on.

When the R (CRAN) option is selected, in the package field type MBESS, and click ‘Add’.

The MBESS package now appears in the list:

We also need to specify some packages when selecting the apt-get option. Click on the
apt-get item in the list of installers. In the package window type ‘pandoc’ and click ‘Add’,
click gsl-bin and click ‘Add’, and type libgsl-dev and click ‘Add’. This should look like:

33

Then click ‘Done’.

We also need to make one change to the R Markdown file. You need to specify where
the data should be read in from (which is no longer the local hard drive). Our
‘Stroop.csv’ file is in the Data pane. You need to change the original line of code:

stroop_data <- read.csv("stroop.csv", sep = " ", header = TRUE)

to the line below:

stroop_data <- read.csv("/data/Data/stroop.csv", sep = " ", header = TRUE)

This tells Code Ocean to look in the data pane (/data/) and then in the data folder
(Data/).

We can now click the ‘Run’ button. This is a good moment to go and have a coffee. Code
Ocean will create the container and install all packages you need – not just packages
you have specified, such as MBESS, but also all packages MBESS depends on – and this
takes at least 10 minutes. Wait patiently. This only takes long once – after that, running
code is fast. When the code is completely done, you should see files appear in the
‘Results’ pane:

Click on the main_analysis.html file, and you will see a pop-up with the HTML file:

34

There is now a completely reproducible analysis file online. Anyone can now reproduce
your data analysis – they can go into the main_analysis.Rmd file, and change anything
the want in your code, and run it again. For example, let’s say you dislike the black
straight line in the first scatterplot, and you want it to be red. It is easy to change ‘black’
to ‘red’ in line 40, and re-run the analysis, and you will get a figure with a red line.
Although that might in itself not be very exciting, the ability to easily re-analyze data
might be useful in more realistic scenarios. For example, imagine you are reviewing a
paper where the researchers do not plot the data. Without having to install any
software, you can just type in hist(stroop_data$Congruent)after the data has been read
in (e.g., on line 24), run the code again, and you will see a histogram for the reaction
times in the Congruent condition. Give it a try.

Conclusion

In this assignment, a number of platforms and software solutions were introduced, such
as GitHub, the Open Science Framework, RStudio, R, and R Markdown. Following the
example here is not the same as being able to use these tools in your research.
Learning to use these tools will take time. You will often get frustrated when the code or
software doesn’t work as you want, or when you have gotten your local and remote
GitHub repositories so much out of sync you just need to delete everything on your
local computer and re-download all files from GitHub (git reset --hard [HEAD] is your
friend). But there are many resources available online to find answers, or to ask for
help. In my experience, it takes is some work, but is doable, even if you have very
limited knowledge of programming. You can get a basic reproducible workflow up and
running by using all the steps described here, and then learn new skills as you need
them. These skills are valued both within and outside of academia and will save you
time (e.g., when re-creating figures for a revision, or when analyzing similar datasets in
the future). A reproducible workflow also improves the quality of your scientific work,
and makes it easier for other scientists to re-use your work in the future.

© Daniel Lakens, 2018. This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 License.

35

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

