
Promise helpers
Yutaka Hirano <yhirano@chromium.org>

Note: This is a public document.

Objective
This document describes the design of Promise helpers in Blink.

Background
Promise is a ECMAScript6 standard library. It is used by many Web APIs having asynchronous operations, e.g.
WebCrypto and ServiceWorker.

Preliminary: V8 context handling
As Promise is implemented with JavaScript in V8, we need to enter a valid v8 context (i.e. v8::Context) to use Promise
operations. blink::ScriptState represents v8 context and you can enter / exit the context with blink::ScriptState::Scope.

ScriptState* scriptState = …;
ASSERT(!scriptState->isolate()->InContext());
{
 ScriptState::Scope scope(scriptState);
 // Here we have entered a v8 context |scriptState->context()|.
 ASSERT(scriptState->isolate()->InContext());
}
ASSERT(!scriptState->isolate()->InContext());

There are a few principles.

●​ When called from JavaScript, you are already in the appropriate v8 context. You should not enter another v8
context unless you truly need to.

●​ Otherwise, you need to enter the appropriate v8 context to use Promise operations. Typically, you can save
RefPtr<ScriptState> into your class and use it when it is needed. Adding [CallWith=ScriptState] to an IDL function
gives you the ScriptState when the function is called.

●​ In spite of the above description, some functions (e.g. ScriptPromiseResolver::resolve) enters a v8 context
automatically. You don’t have to enter a v8 context to use them.

mailto:yhirano@chromium.org
https://github.com/domenic/promises-unwrapping
https://dvcs.w3.org/hg/webcrypto-api/raw-file/tip/spec/Overview.html
https://slightlyoff.github.io/ServiceWorker/spec/service_worker/

ScriptPromise
ScriptPromise represents a Promise object (i.e. v8::Promise). Because a Promise object keeps track of attached functions,
holding ScriptPromise in a class leads to a memory leak. You can take or pass a ScriptPromise as a parameter or a return
value, but you must not hold it as a member.
The IDL code generator converts ScriptPromise and v8::Handle<v8::Promise> automatically when “Promise” type is
specified in an IDL file.
ScriptPromise::then corresponds to Promise.prototype.then. You can attach arbitrary functions to the ScriptPromise.

ScriptFunction

ScriptFunction is a helper class that enables you to define a JavaScript function easily. You can define a class inheriting
ScriptFunction and override call method. When you call bindToV8Function, the result v8 Handle holds keeps the function
object alive.
There is a restriction: calling bindToV8Function twice leads to a problem. We recommend you not to expose the object out
of the class to avoid accidents.
Here is an example of ScriptFunction subclass.

class AddOneFunction : public ScriptFunction {​
public:​
 static v8::Handle<v8::Function> createFunction(ScriptState* scriptState)​
 {​
 AddOneFunction* self = new AddOneFunction(scriptState);​
 return self->bindToV8Function();​
 }​
​
private:​
 explicit AddOneFunction(ScriptState* scriptState) : ScriptFunction(scriptState) { }​

 virtual ScriptValue call(ScriptValue value) OVERRIDE​
 {​
 int intValue = value.v8Value().As<v8::Integer>()->Value();​
 return ScriptValue(scriptState(), v8::Integer::New(scriptState()->isolate(), intValue + 1));​
 }​
};

ScriptPromiseResolver
ScriptPromiseResolver resolves / rejects the associated Promise. A ScriptPromiseResolver has the associated
ScriptPromise, so having a ScriptPromiseResolver may cause cyclic references. Unlike ScriptPromise, having a
ScriptPromiseResolver is allowed because it is natural to keep objects while there is possibility to be resolved or rejected.
As a result, a user must call reject when there is no possibility to resolve the promise in the future. Calling resolve or reject
releases all resources held by the resolver, so you don’t have to worry about them after that.

https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp%257Cdef&l=2106&gsn=AddOneFunction
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptFunction.h&cl=GROK&ct=xref_jump_to_def&l=52&gsn=ScriptFunction
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8-util.h&cl=GROK&ct=xref_jump_to_def&l=19&gsn=v8
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8.h&cl=GROK&ct=xref_jump_to_def&l=198&gsn=Handle
https://code.google.com/p/chromium/codesearch#chromium/src/out/Debug/GENERATED/figments/cpp/TemplateSpecialization/start-with-v8/v8/class-Handle/start-with-v8/v8/class-Function.cc&cl=GROK&ct=xref_jump_to_def&l=3&gsn=%3C
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8-util.h&cl=GROK&ct=xref_jump_to_def&l=19&gsn=v8
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8.h&cl=GROK&ct=xref_jump_to_def&l=2711&gsn=Function
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::createFunction(blink::ScriptState%2520*)@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp%257Cdef&l=2108&gsn=createFunction
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptState.h&cl=GROK&ct=xref_jump_to_def&l=24&gsn=ScriptState
https://code.google.com/p/chromium/codesearch#chromium/src/out/Debug/GENERATED/figments/cpp/PointerTo/start-with-bl/blink/class-ScriptState.cc&cl=GROK&ct=xref_jump_to_def&l=3&gsn=*
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::createFunction(blink::ScriptState%2520*)::param-scriptState@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp%257Cdef&l=2108&gsn=scriptState
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&cl=GROK&ct=xref_jump_to_def&l=2086&gsn=AddOneFunction
https://code.google.com/p/chromium/codesearch#chromium/src/out/Debug/GENERATED/figments/cpp/PointerTo/start-with-bl/blink/anonymous-namespace/chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp/class-AddOneFunction.cc&cl=GROK&ct=xref_jump_to_def&l=3&gsn=*
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::createFunction(blink::ScriptState%2520*)::self@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp:73033%257Cdef&l=2110&gsn=self
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&cl=GROK&ct=xref_jump_to_def&l=2086&gsn=AddOneFunction
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&cl=GROK&ct=xref_jump_to_def&l=2088&gsn=scriptState
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&cl=GROK&ct=xref_jump_to_def&l=2090&gsn=self
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptFunction.cpp&cl=GROK&ct=xref_jump_to_def&l=12&gsn=bindToV8Function
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::AddOneFunction(blink::ScriptState%2520*)@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp%257Cdef&l=2115&gsn=AddOneFunction
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptState.h&cl=GROK&ct=xref_jump_to_def&l=24&gsn=ScriptState
https://code.google.com/p/chromium/codesearch#chromium/src/out/Debug/GENERATED/figments/cpp/PointerTo/start-with-bl/blink/class-ScriptState.cc&cl=GROK&ct=xref_jump_to_def&l=3&gsn=*
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::AddOneFunction(blink::ScriptState%2520*)::param-scriptState@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp%257Cdef&l=2115&gsn=scriptState
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptFunction.h&cl=GROK&ct=xref_jump_to_def&l=52&gsn=ScriptFunction
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&cl=GROK&ct=xref_jump_to_def&l=2095&gsn=scriptState
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptValue.h&cl=GROK&ct=xref_jump_to_def&l=45&gsn=ScriptValue
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::call(blink::ScriptValue)@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp%257Cdef&l=2120&gsn=call
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptValue.h&cl=GROK&ct=xref_jump_to_def&l=45&gsn=ScriptValue
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::call(blink::ScriptValue)::param-value@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp%257Cdef&l=2120&gsn=value
https://code.google.com/p/chromium/codesearch#chromium/src/base/compiler_specific.h&cl=GROK&ct=xref_jump_to_def&l=140&gsn=OVERRIDE
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&ct=xref_usages&gs=cpp:blink::%253Canonymous-namespace%253E::class-AddOneFunction::call(blink::ScriptValue)::intValue@chromium/../../third_party/WebKit/Source/core/testing/Internals.cpp:73403%257Cdef&l=2124&gsn=intValue
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&cl=GROK&ct=xref_jump_to_def&l=2102&gsn=v8Value
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8.h&cl=GROK&ct=xref_jump_to_def&l=361&gsn=As
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8-util.h&cl=GROK&ct=xref_jump_to_def&l=19&gsn=v8
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8.h&cl=GROK&ct=xref_jump_to_def&l=2164&gsn=Integer
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8.h&cl=GROK&ct=xref_jump_to_def&l=235&gsn=-%3E
https://code.google.com/p/chromium/codesearch#chromium/src/v8/src/api.cc&cl=GROK&ct=xref_jump_to_def&l=4943&gsn=Value
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptValue.h&cl=GROK&ct=xref_jump_to_def&l=45&gsn=ScriptValue
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptFunction.h&cl=GROK&ct=xref_jump_to_def&l=55&gsn=scriptState
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8-util.h&cl=GROK&ct=xref_jump_to_def&l=19&gsn=v8
https://code.google.com/p/chromium/codesearch#chromium/src/v8/include/v8.h&cl=GROK&ct=xref_jump_to_def&l=2164&gsn=Integer
https://code.google.com/p/chromium/codesearch#chromium/src/v8/src/api.cc&cl=GROK&ct=xref_jump_to_def&l=6267&gsn=New
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptFunction.h&cl=GROK&ct=xref_jump_to_def&l=55&gsn=scriptState
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/bindings/core/v8/ScriptState.h&cl=GROK&ct=xref_jump_to_def&l=69&gsn=isolate
https://code.google.com/p/chromium/codesearch#chromium/src/third_party/WebKit/Source/core/testing/Internals.cpp&cl=GROK&ct=xref_jump_to_def&l=2104&gsn=intValue

V8 Context handling

ScriptPromiseResolver::resolve and ScriptPromiseResolver::reject enters the v8 context on that the resolver was created.
Hence it is needless to enter the v8 context manually.

{
 RefPtr<ScriptPromiseResolver> resolver = …;
 …
 // You don’t have to enter a v8 context here.
 resolver->resolve(“hello”);
}

Note that other functions such as ScriptPromiseResolver::promise doesn’t have such property.

ExecutionContext state

ScriptPromiseResolver stops working and releases all resources when the associated ExecutionContext stops. That
means the resource leak doesn’t persist beyond the document lifetime, though calling resolve or reject appropriately is
much more preferred if possible. It also means that ScriptPromiseResolver is useless (i.e. resolve and reject take no
effect) when the associated ExecutionContext is stopped.

Resolution / Rejection timing

When resolve or reject is called, the Promise internal state changes immediately, but the associated handlers will be
executed in the next microtask execution, i.e. asynchronously. This behavior is consistent with JavaScript Promise’s
behavior.

{
 RefPtr<ScriptPromiseResolver> resolver = …;
 // You need to enter the approriate v8 context here.
 resolver.promise().then(onFulfilled);
 …
 // You don’t have to enter a v8 context here.
 resolver->resolve(“hello”);
 // onFulfilled is not called yet.
}

keepAliveWhilePending

ScriptPromiseResolver::keepAliveWhilePending is a protected method. When called, it increments the reference counter
so that the instance will live without being referenced. When resolve or reject is called, or the ExecutionContext is stopped,
the reference counter will be decremented.
This method is implemented for “Asynchronous Initializer”s. Some APIs such as WebMIDI provides a function that returns
a Promise which will be resolved with a context object when the context object is initialized successfully.

partial interface Navigator {

 // The Promise will be resolved with a MIDIAccess when it is initialized.

 Promise requestMIDIAccess(optional MIDIOptions options);

};

In such a case, we need to create a C++ class that manages the initialization. On the other hand, there is no natural object
that holds the initializer.
keepAliveWhilePending enables us to keep the initializer alive without explicit references while the promise is pending.

Here is an example of asynchronous initializer.

class MIDIAccessInitializer : public ScriptPromiseResolver, public MIDIAccessorClient {
public:
 ...
 static ScriptPromise start(ScriptState* scriptState, const MIDIOptions& options)
 {
 RefPtr<MIDIAccessInitializer> p =
 adoptRef(new MIDIAccessInitializer(scriptState, options));
 p->keepAliveWhilePending();
 p->suspendIfNeeded();
 return p->start();
 }
 virtual ~MIDIAccessInitializer();

 // MIDIAccessorClient
 virtual void didStartSession(...) override;
 ...
private:
 MIDIAccessInitializer();
 ScriptPromise start();
 ...
};

This class doesn’t expose an instance reference, but the instance is kept alive until resolve or reject is called, or the
ExecutionContext is stopped. resolve or reject is called in didStartSession. That way, we can implement “asynchronous
initializer”s with this feature. Note that this is complex and you shouldn’t use it without understanding the mechanism.

ScriptPromiseProperty
ScriptPromiseProperty represents a property of type Promise held in a DOM object. As said before, ScriptPromise should
not be held in an object as a member, for two reasons.

1.​ ScriptPromise has a strong reference to the v8 Promise object and a v8 Promise object can have a (strong)
reference for arbitrary object. That may cause a circular reference leading to resource leaks.

2.​ A DOM object can be shared among multiple worlds. Returning the same Promise to multiple worlds leads to an
object leak between worlds which is a problem in terms of security.

ScriptPromiseProperty solves these problems.

The above describes the case where two worlds share a DOM object. In such a case, one DOM wrapper for each world is
created. ScriptPromiseProperty holds a set of weak references to DOM wrappers of the DOM object that holds the
property. Despite the fact that v8 Promise objects can have (string) references for arbitrary objects, there are no reference
cycles because DOM wrappers are referenced by weak references. In addition to that, as ScriptPromiseProperty has a set
of wrappers, it can return a different Promise object for each world.
ScriptPromiseProperty has resolve and reject methods. They resolve / reject the all involved promise objects
simultaneously, respectively.

There is one caveat. As ScriptPromiseProperty doesn’t hold strong references, a DOM wrapper can be garbage collected.
Once it is garbage collected, resolve and reject don’t take effect even if promise handlers were attached to the promise
object. To prevent this, you may need to keep DOM wrappers until resolve or reject is called. ActiveDOMObject provides
such functionality.

CallbackPromiseAdapter
CallbackPromiseAdapter enables you to resolve / reject a Promise from outside of Blink. CallbackPromiseAdapter is a
template class that takes two types S and T. Both types should have its associated types S::WebType and T::WebType.
CallbackPromiseAdapter<S, T> is a subclass of WebCallbacks<S::WebType, T::WebType>. As WebCallbacks is defined in
public/platform, it’s visible from content/ layer.

CallbackPromiseAdapter has a ScriptPromiseResolver. When onSuccess is called, CallbackPromiseAdapter<S, T> calls
S::take and resolves Promise with its return value. If the associated ExecutionContext is stopped, it calls S::dispose
instead. Note that the ownership of the argument of onSuccess is not specified - it completely depends on the caller and
the callee. When onError is called, CallbackPromiseAdapter<S, T> calls T::take in a similar way.

Please read the CallbackPromiseAdapter’s class comment for details.

Web IDL code generator
Promise type in WebIDL is tied to ScriptPromise in Blink.
Promise parameter

When a non-promise value is given to a parameter that is specified as Promise, the value will be automatically converted
to a Promise object with ScriptPromise::cast. As a result, when you write an IDL function that takes a Promise parameter,
the code generator accepts any value for the parameter and converts it to a Promise.

Promise return value
As specified in the Web IDL spec, functions returning Promise return a rejected Promise instead of throwing a error. This is
done by the code generator. As a side effect, when you throw an exception (via ExceptionState), it will not be thrown and a
rejected Promise will be returned. But simply returning a rejected Promise is preferable because it doesn’t confuse
readers.

	Promise helpers
	Objective
	Background
	Preliminary: V8 context handling
	ScriptPromise
	ScriptFunction

	ScriptPromiseResolver
	V8 Context handling

	ScriptPromiseProperty
	CallbackPromiseAdapter
	Web IDL code generator
	Promise parameter

