
 

 

Discardable GPU Memory V2 
ericrk@ 

Overview 

This is a re-design of the initial GPU discardable proposal, available here. 

Problem 

In Chrome, browser and renderer processes make heavy use of GPU memory. Each browser or 

renderer has its own caches, each cache with its own memory limits. As there is no central 

controller, cache limits must be chosen conservatively, assuming that many caches may be live 

simultaneously. This leads to inefficient use of memory. Not only is the upper limit on memory 

mostly unconstrained, but a renderer or browser performing heavy GPU work is given the same 

cache limits as one performing light work. 

Proposed Solution 

This document proposes the concept of “Discardable GPU Memory”. This is memory that: 

●​ Can be unlocked by a client (renderer/browser), allowing the GPU process to delete it 

at-will. 

●​ Is stored in a single cache in the GPU process, allowing for a global eviction policy. 

These features allow the GPU process to maintain a single cache of GPU memory from multiple 

clients, deleting objects as necessary to enforce a global GPU memory limit.  

Client API Design 

Overview 

Note: The initial implementation of Discardable GPU memory will deal with GL textures only. 

However, the implementation is designed to be extendable to other GL objects (buffers, render 

targets), as well as GPU memory buffers. 

Every texture in use by Chrome will now be in one of three states. 

 

https://docs.google.com/document/d/1LoNv02sntMa7PPK-TZTuMgc3UuWFqKpOdEqtFvcm_QE/edit?usp=sharing


 

 

●​ Non-discardable - a “traditional” GL texture which is not associated with the GPU 

discardable system. Non-discardable textures do not count against GPU discardable 

memory limits. 

●​ Locked-discardable - a GL texture which is associated with the GPU discardable system 

and which counts against GPU discardable memory limits. A locked-discardable texture is 

considered in-use, and will not be automatically deleted by the GPU process. 

●​ Unlocked-discardable - a GL texture which is associated with the GPU discardable 

system and which counts against GPU discardable memory limits. An 

unlocked-discardable texture is considered not-in-use, and may be automatically deleted 

by the GPU process. The only operation which may be performed on an 

unlocked-discardable texture is glDeleteTextures. 

A GL texture can transition between these states as follows: 

 

The GPU process can delete unlocked-discardable textures as necessary to keep Chrome below 

a global memory limit. Clients must handle cases where re-locking an unlocked-discardable 

texture fails. 

GL API 

void glInitializeDiscardableTextureCHROMIUM(GLuint texture_id); 

Transitions the provided texture from the non-discardable to the locked-discardable state. 

void glUnlockTextureCHROMIUM(GLuint texture_id); 

Transitions the provided texture_id from the locked-discardable to the unlocked-discardable 

state. May only be called on textures which are in the locked-discardable state. 

bool glLockTextureCHROMIUM(GLuint texture_id); 

Transitions the provided textures to the locked-discardable state. Returns true if the texture was 

successfully locked, otherwise returns false, indicating that the texture was deleted. 

Implementation 

Goals 



 

 

●​ Lock calls are very common and block further execution. These calls should be fast, even 

in the cases where Lock fails. 

●​ Unlock calls must be synchronized with the GL command buffer, ensuring that unlock is 

delayed until all commands which may reference the locked memory are completed. 

Key Components 

In order to implement the GPU discardable APIs outlined above, we will implement: 

●​ DiscardableHandle - A wrapper around shared-memory representing the 

locked/unlocked state of a discardable allocation. 

●​ ClientDiscardableManager- A client (non-GPU) process component responsible for 

creating DiscardableHandles from a pool of shared-memory. 

●​ ServiceDiscardableManager - A GPU process component which tracks 

DiscardableHandles and sizes of current allocations, deleting unlocked allocations as 

necessary. 

●​ GL Command Buffer functions - Implementations of Initialize/Lock/Unlock outlined 

above. 

DiscardableHandle 

Backed by a single int in shared memory. This int represents 
the possible states of a discardable allocation. Due to lock 
being handled on the client process and unlock on the GPU 
process, there may be cases where a handle is locked multiple 
times before being unlocked. In these cases, the lock count is 
represented by values 2+. 

Shared Memory Value State 

0 Deleted 

1 Unlocked 

2+ Locked 

State is transitioned using atomic operations on shared memory.  
​
ClientDiscardableManager 
Allocates a block of shared memory from which 
DiscardableHandles are allocated. Maintains a free-list to allow 
for efficient re-use of this memory as handles are 
created/destroyed. 
 
 
 



 

 

ServiceDiscardableManager 
Tracks each discardable allocation, storing its size and DiscardableHandle. 
Also tracks overall size of discardable memory. When allocated memory goes 
over-budget, the ServiceDiscardableManager attempts to delete elements in 
LRU order. 
 

 

glInitializeDiscardableTextureCHROMIUM 

In the client process: 

1.​ Requesting a new DiscardableHandle from the client process’ ClientDiscardableManager. 

2.​ Sends the handle and the texture ID over the command buffer to the GPU process. 

In the GPU process: 

3.​ Receives the DiscardableHandle and texture ID. 

4.​ Queries the TextureManager for the texture’s current size. 

5.​ Registers the texture ID, DiscardableHandle, and current size with the 

ServiceDiscardableManager. 

 

 

 



 

 

glLockDiscardableTextureCHROMIUM 

As lock returns a success status synchronously, it is 

important that it execute quickly, not requiring a round-trip 

to the GPU process. 

In the client process: 

1.​ Requests the handle for the given texture from the 

ClientDiscardableManager. 

2.​ Immediately attempts to lock the handle, returning 

the success or failure status. 

glUnlockDiscardableTextureCHROMIUM 

As commands in the command-buffer may rely on the locked data, unlock must not happen 

immediately in the Renderer process. Instead, it is sent over the command buffer to the GPU 

process, ensuring proper ordering with dependent commands. 

In the client process: 

1.​ Sends the texture ID to the GPU process. 

In the GPU process 

2.​ Receives the texture ID and notifies the ServiceDiscardableManager to unlock the texture. 

The ServiceDiscardableManager unlocks the texture, decrementing its 

DiscardableHandle value by 1. If the handle reaches the “unlocked” state (1), the manager 

updates the texture’s position in its LRU list. 

 

 



 

 

Challenges 

Eviction Strategy 

When choosing which unlocked elements to evict in the ServiceDiscardableManager, a naive 

approach is to use an LRU. Based on feedback, it sounds like this may lead to cache thrashing in 

the case where we are just-over-budget frame after frame. We may want to consider a more 

randomized eviction strategy. 

Size Changes 

In the case of textures, an allocation can change size as levels are added. We need to 

communicate size changes from the TextureManager to the ServiceDiscardableManager as they 

happen. 

Resource Deletion 

As the ServiceDiscardableManager may be deleting resources across many GL contexts, we 

should take care to batch the deletes by context, in order to minimize context switches. 

Future Work 

Other GL Resource Types 

Buffers, render targets, etc… can be handled in much the same way as textures, by adding 

methods to ServiceDiscardableManager/HandleManager to support these resource types. 

GPU Memory Buffers 

The system outlined here could be expanded to support GPU Memory Buffers. As GMBs are 

already created/destroyed independently of the GL Command Buffer, it may make sense to offer 

an alternative API for locking/unlocking, built on the same DiscardableHandle system. This would 

leave synchronization with GL commands up to the caller, much the same way GMB deletion is 

handled. 


	Discardable GPU Memory V2 
	Overview 
	Problem 
	Proposed Solution 

	Client API Design 
	Overview 
	GL API 

	Implementation 
	Goals 
	Key Components 

	 
	Challenges 
	Eviction Strategy 
	Size Changes 
	Resource Deletion 

	Future Work 
	Other GL Resource Types 
	GPU Memory Buffers 


