Department of Mathematics # Teaching Plan Session -2021-22 Name of the faculty: Dr. Tarun Maiti ### Sem I: Core Course: Vector Analysis | Month | Topics to be covered | | | | |-----------|---|--|--|--| | | 1st week | 2 nd week | 3 rd week | 4 th week | | July | Basics of
Vector
algebra | Vector Triple
product | Vector Triple
product | Solving
Problems on
Vector Triple
product | | August | Vector
equations | Vector
equations | Practice Problems on Vector equations | Solution of
Vector
equations | | September | Applications to geometry and mechanics — concurrent forces in a plane | Theory of couples | System of parallel force | Introduction
to vector
functions | | October | Class test, Limits and continuity of vector functions | Puja
Vacation | Puja Vacation | Puja Vacation | | November | Puja
Vacation | Limits and
continuity of
vector
functions | Differentiation and integration of vector functions of one variable. | Internal Test | | December | Tutorial | University
Exam | University
Exam | University
Exam | #### Sem II: no Core Course ### Sem III: SEC-A: C Programming Language | Month | Topics to be covered | | | | |-------|---|------------|-----------|-------------| | | 1 st week 2 nd week 3 rd week 4 th week | | | | | July | An overview | compiler, | Character | expression, | | | of theoretical | assembler, | set. | assignment | | | computers,
history of
computers,
overview of
architecture
of computer, | machine language, high level language, object-oriented language, programming language and importance of C programming. | Constants
and variables
data types, | statements,
declaration.
Home
Assignments | |-----------|---|--|--|--| | August | Operation and Expressions: Arithmetic operators, relational operators, logical operators. | Decision Making
and Branching:
decision making
with if
statement, if-else
statement,
Nesting if
statement, | switch
statement,
break and
continue
statement. | Control Statements: While statement, do-while statement, | | September | for
statement.
Home
Assignments.
Discussion
some basics
programs | Arrays: One-dimension two-dimension and multidimensional arrays, declaration of arrays, initialization of one and multi-dimension al arrays. | Class Test,
Hands on C
programmin
g on
computer | User-define d Functions: Definition of functions, Scope of variables, return values and their types, | | October | function
declaration,
function call
by value | Puja Vacation | Puja
Vacation | Puja
Vacation | | November | Puja
Vacation | Nesting of functions, passing of arrays to functions. Doubt clearing | Recurrence of function. Introduction to Library functions: stdio.h, math.h, string.h stdlib.h, time.h etc. | Internal
Test | | December | Tutorial | University Exam | University
Exam | University
Exam | Sem IV: Core Course 10: Mechanics | Month | Topics to be co | overed | | | |-----------|---|---|---|--| | | 1 st week | 2 nd week | 3 rd week | 4 th week | | July | 1 st week Work, power, kinetic energy, conservative forces - potential energy. Moment of a | Existence of potential energy function. Energy conservation in a conservative field. Stable equilibrium and small oscillations: | 3rd week Approximate equation of motion for small oscillation. Impulsive forces. Problems' assignment. | 4 th week Linear momentum, linear momentum principle, motion of the centre of mass, conservation of linear momentum | | August | force about a point, about an axis. Angular momentum about a point, about an axis. | Angular momentum principle about centre of mass. Conservation of angular momentum (about a point and an axis). | and degrees of
freedom of a
multi-particle
system, energy
principle,
energy
conservation | motion in free space and under gravity. Problem Assignment | | September | collision of elastic bodies. The two-body problem. | collision of
elastic bodies.
The two-body
problem. | Motion of a projectile in a resisting medium under gravity, orbits in a central force field, Stability of nearly circular orbits. | Motion under
the attractive
inverse
square law,
Kepler's laws
on planetary
motion | | October | Class Test
and Doubt
clearing. | Puja Vacation | Puja Vacation | Puja
Vacation | | November | Puja
Vacation | Slightly disturbed orbits, motion of artificial satellites. Constrained motion of a particle on smooth and rough curves. | Equations of motion referred to a set of rotating axes. | Motion on a smooth sphere, cone, and on any surface of revolution. | | December | Tutorial,
Internal Test | University
Exam | University
Exam | University
Exam | Sem V: DSE-B(1): Linear Programming & Game Theory | Month | Topics to be covered | | | | |---------------|---|---|---|--| | | 1 st week | 2 nd week | 3 rd week | 4 th week | | July | Transportatio
n and
Assignment
problems. | Transportatio
n and
Assignment
problems. | Transportat
ion and
Assignment
problems. | Mathematical justification for optimality criterion. Hungarian method. | | August | Traveling Salesman problem. Assignments on some Basic Problems. | Concept of game problem. Rectangular games. | Pure strategy and Mixed strategy. Saddle point and its existence. Optimal strategy and value of the game. | Necessary and sufficient condition for a given strategy to be optimal in a game. | | Septembe
r | Concept of Dominance. | Fundamental Theorem of rectangular games. | Algebraic
method,
Graphical
method | Dominance
method of
solving
Rectangular
games. | | October | Class test and
Doubt
clearing | Puja Vacation | Puja
Vacation | Puja Vacation | | November | Puja Vacation | Other method
to solve game
problem | Inter-relation between theory of games and L.P.P. | Internal Test | | December | Tutorial | University
Exam | University
Exam | University
Exam | # Sem VI: DSE-A(2): Mathematical Modelling | Month | Topics to be covered | | | | |-------|----------------------|----------------------|----------------------|----------------------| | | 1 st week | 2 nd week | 3 rd week | 4 th week | | July | Basics of Monte | Basics of | Simulating | generating | | | Carlo | Monte | deterministic | random | | | | Carlo | behavior (area | numbers: | | | simulation
modelling | simulation
modelling | under a curve,
volume under
a surface), | middle
square
method,
linear
congruence, | |-----------|--|--------------------------------|---|--| | August | generating random numbers: middle square method, linear congruence. Assignments on some basic problems | Basics of
queuing
models | Basics of queuing models | Solving problems on Basics of queuing models. | | September | harbor system
model | harbor
system
model | morning rush
hour model | morning rush
hour model
Class Test | | October | Linear programming model: geometric solution algebraic solution | Puja
Vacation | Puja Vacation | Puja Vacation | | November | Puja Vacation | simplex
method | sensitivity
analysis | Internal Test | | December | Tutorial | University
Exam | University
Exam | University
Exam | ### Sem VI: Core Course 14 Practical: Numerical Methods Lab | Month | Topics to be covered | | | | |--------|---|--|---|--| | | 1 st week | 2 nd week | 3 rd week | 4 th week | | July | Program 1:
Calculate
the sum of
series
Program 2;
sorting
numbers | Solution of transcendenta l and algebraic equations by i) Bisection method ii) Newton Raphson method | 3. Solution of transcendenta l and algebraic equations by iii) Secant method. iv) Regula Falsi method | Numerical Integration i) Trapezoidal Rule ii) Simpson's one third rule | | August | Numerical
Integration
iii) Weddle's
Rule iv) | Numerical
Integration
iv) Gauss
Quadrature | Solution of ordinary differential equations i) Euler method | Solution of
ordinary
differential
equations iii)
Runge Kutta | | | Gauss
Quadrature | | ii) Modified
Euler method | method (order 4) iv) The method of successive approximation s (Picard | |---------------|---|--|--|---| | Septembe
r | Interpolatio
n i)
Lagrange
Interpolatio
n | Interpolation ii) Newton's forward, backward and divided difference interpolations | Interpolation ii) Newton's forward, backward and divided difference interpolations | Solution of system of linear equations i) LU decomposition method ii) Gaussian elimination method | | October | Solution of system of linear equations iii) Gauss-Jaco bi method iv) Gauss-Seide l method | Puja Vacation | Puja Vacation | Puja Vacation | | November | Puja
Vacation | Method of finding Eigenvalue by Power method (up to 4 × 4) | Fitting a Polynomial Function (up to third degree) | Fitting a Polynomial Function (up to third degree) | | December | Practice | University
Exam | University
Exam | University
Exam |