

THE UNITED REPUBLIC OF TANZANIA

DODOMA REGION

FORM FOUR MOCK EXAMINATION-2023

031/2A

PHYSICS 2A-ACTUAL PRACTICAL

MARKING SCHEME

1. (i) Table of results

$x(cm)$	$d_1(\pm 0.5cm)$	$d_2(cm)$		$d_2(\pm 0.5cm)$	$d_1 - d_2(cm)$
		Brass	Steel		
5	10	8.8	8.7	8.75	1.25
10	20	17.6	17.5	17.65	2.35
15	30	26.5	26.2	26.35	3.65
20	40	35.3	34.9	35.15	4.85

(@ Column 03 marks **Total 09 marks**)

(ii) A graph of $d_1 - d_2$ against d_1 is shown on a graph paper

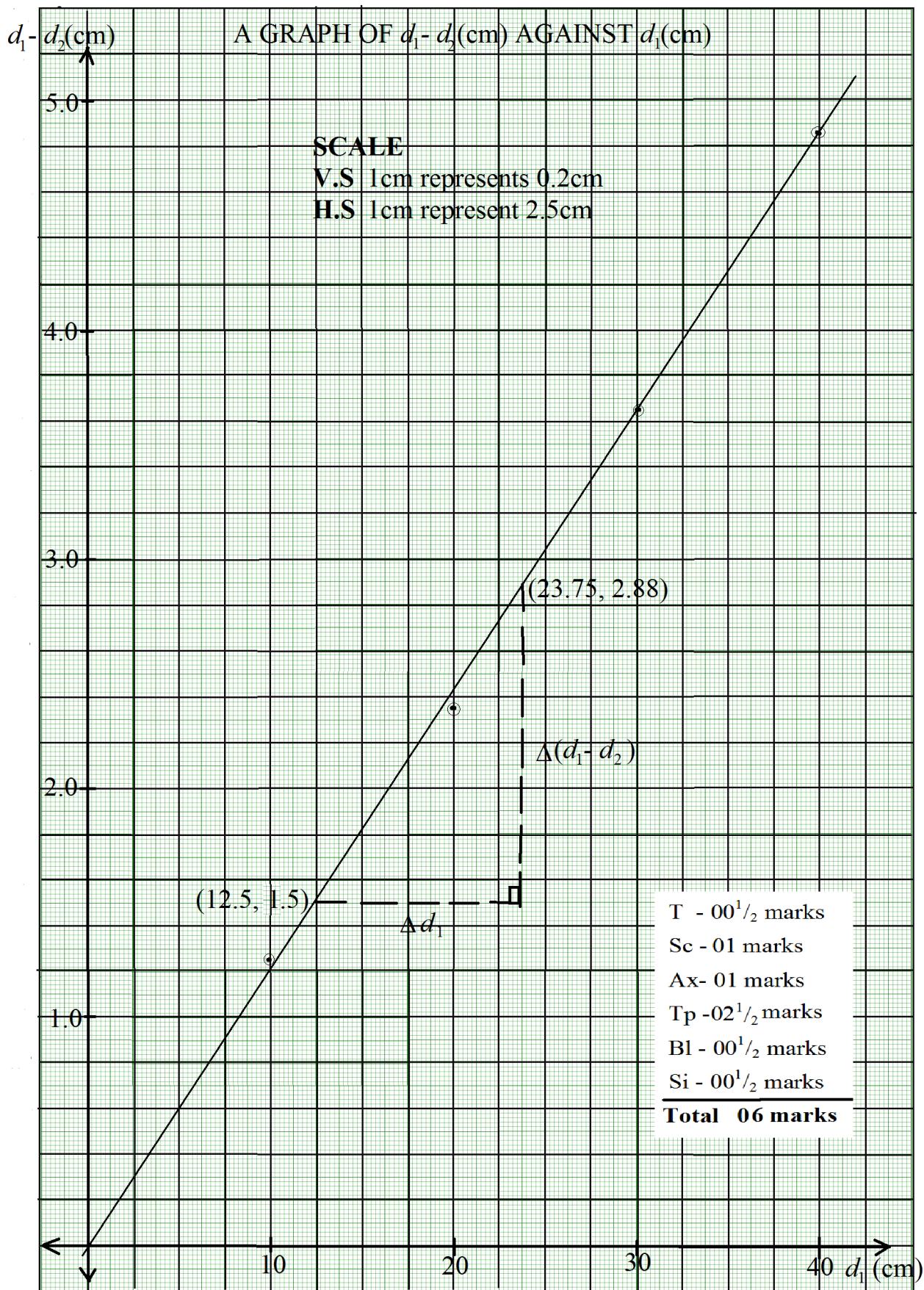
$$(iii) \text{ From the graph:-} \quad \text{Slope} \quad \frac{\Delta(d_1 - d_2)(cm)}{\Delta d_1(cm)} \quad (01 \text{ mark})$$

$$= \frac{2.88 - 1.5}{23.75 - 12.5} \quad (01 \text{ mark})$$

$$= 0.123 \quad (01 \text{ mark})$$

$$(iv) \text{ Given} \quad R.D = \frac{d_1}{d_1 - d_2}$$

$$\text{Then} \quad \text{Slope} = \frac{d_1 - d_2}{d_1} = \frac{1}{R.D} \quad (01 \text{ mark})$$


$$RD = \frac{1}{\text{Slope}} = \frac{1}{0.123} = 8.15 \pm 0.7 \quad (02 \text{ marks})$$

$$(v) \text{ Since} \quad RD = \frac{\rho_{\text{mass}}}{\rho_{\text{water}}} \quad (01 \text{ mark})$$

$$\rho_{\text{mass}} = RD \times \rho_{\text{water}} = 8.15 \times 1000 \text{ kg/m}^3 = 8150 \text{ kg/m}^3 \quad (01 \text{ mark})$$

(vi) The mass will float in mercury since its density is less than that of mercury
(02 marks)

2. (i) Table of results

$R(\Omega)$	$V(V)$	$\frac{1}{R}(\Omega^{-1})$	$\frac{1}{V}(V^{-1})$
1	0.90	1.00	1.11
2	1.20	0.50	0.83
4	1.35	0.25	0.74
5	1.40	0.20	0.71
8	1.45	0.10	0.68

(@ Column 03 marks **Total 09 marks**)

(ii) A graph of $\frac{1}{V}(V^{-1})$ against $\frac{1}{R}(\Omega^{-1})$ is shown on a graph paper.

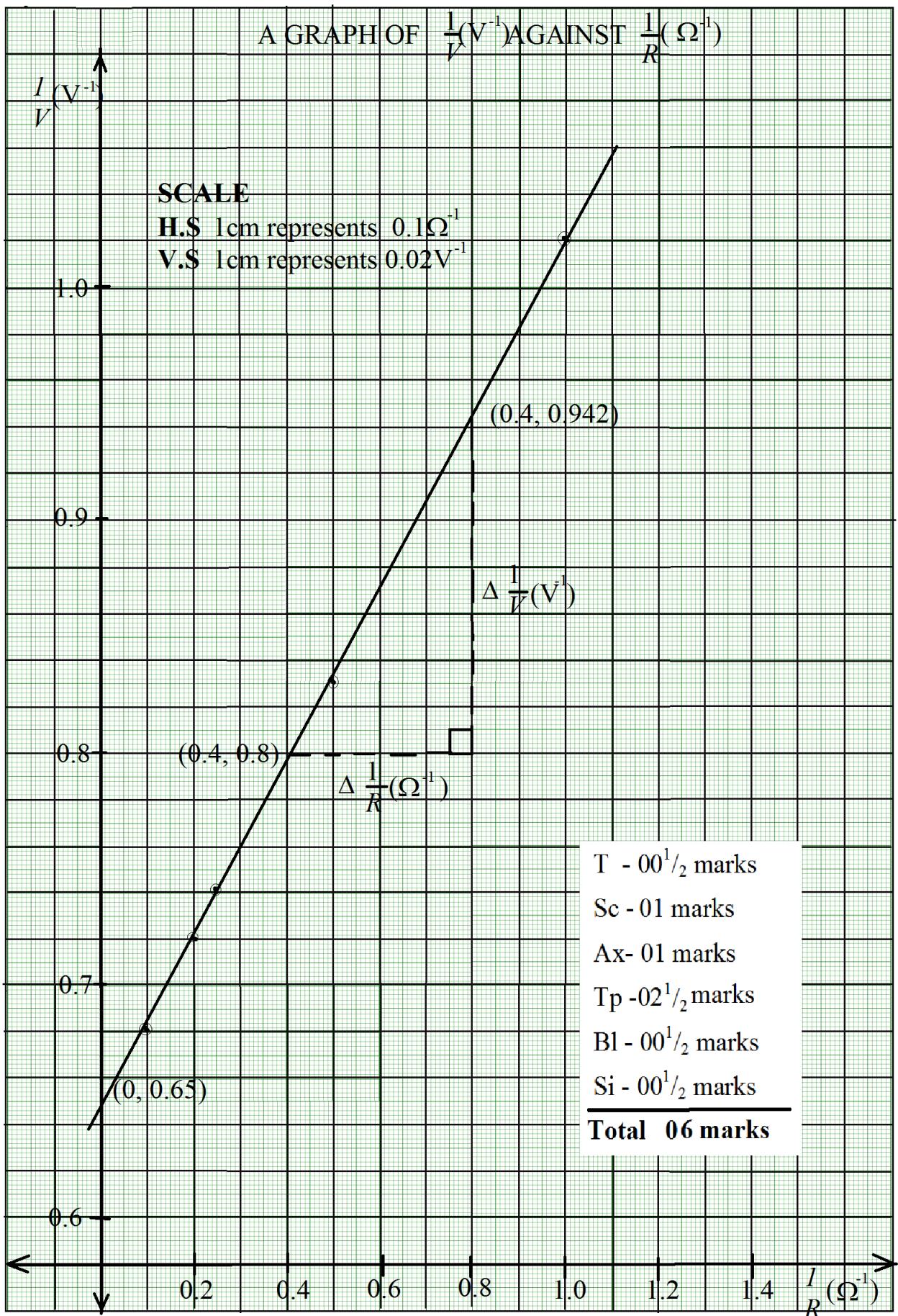
(iii) From the graph, Slope
$$= \frac{\Delta \frac{1}{V}(V^{-1})}{\Delta \frac{1}{R}(\Omega^{-1})}$$
 (01 mark)

$$= \frac{0.945 - 0.8}{0.8 - 0.4} \quad \text{**(01 mark)**$$

$$= 0.36 \Omega V^{-1} \quad \text{**(01 mark)**$$

The value of $\frac{1}{V}$ - intercept is 0.35 V^{-1} **(01 mark)**

(iv) The physical meaning of the slope is the ratio of internal resistance to the e.m.f of a cell $\left(\frac{r}{E} \right)$ **(01 mark)**


The physical meaning of $\frac{1}{V}$ - intercept is the reciprocal of e.m.f of the cell **(01 mark)**

(v) Possible aims of this experiment

- (i) To study the variation of resistance and p.d across the resistor R
- (ii) To determine the ratio of internal resistance and e.m.f of a cell.
- (iii) To determine the reciprocal of the e.m.f of a cell (to determine the e.m.f of the cell)

(Any two @ 02

marks)

