
​
MediWatch: Predicting Patient Readmission with ML and MLOps 

The more I learn about Machine Learning, the more I realize that model development is only 
one piece of the puzzle. Robust models are not just about getting high accuracy on a 
benchmark — they need to be resilient to outliers, supported by strong data and compute 
infrastructure, and deployed in a way that makes them usable across different environments. 

Over the past year, I’ve been deepening my understanding of Advanced ML topics through the 
Interview Kickstart Advanced Machine Learning bootcamp. I revisited concepts like 
recurrent neural networks, transformers, CNNs, and even the latest LLM agents. It has been 
both humbling and inspiring to see how quickly the field is evolving. But what struck me most 
was how central MLOps is crucial for real-world machine learning problems. 

In essence, nearly every ML challenge is an operational one: 

 👉 How do I manage the data versioning for model training? How do I organize new data?​
 👉 How do we save, version, and manage models?​
 👉 How do we train and re-train efficiently?​
 👉 How do we deploy them so they can serve predictions reliably?​
 👉 How do we detect when models start to drift and require updates? 

Finding a “good model” is often not the hardest part. Deploying, monitoring, scaling, and 
maintaining it in production — that’s where real impact happens. 

🔗 Project code & documentation: GitHub Repository 

For my capstone project, I chose to focus on MLOps. Together with Colin, we built 
MediWatch, an end-to-end ML system designed to predict hospital readmission risk using the 
well-known diabetes readmission dataset. Patient readmissions are a critical challenge for 
healthcare — they affect costs, strain hospital resources, and most importantly, impact patient 
well-being. 

What we built in MediWatch: 

●​ Developed predictive models (XGBoost was the best-performing)​
 

●​ Scaled hyperparameter optimization with Ray​
 

●​ Served models via API, fully containerized with Docker & Kubernetes​
 

●​ Tracked experiments with MLflow​
 

●​ Implemented Drift detection → if incoming data distribution differs from baseline, the 
pipeline automatically retrains and redeploys the model.​
 

https://github.com/abuchin/patient_readmission_kaggle
https://www.kaggle.com/datasets/brandao/diabetes


●​ Automated workflows using Airflow, to systematically retrain new models with the 
upcoming data.​
 

Through this project I came to appreciate a key difference between data science and applied 
machine learning: data scientists often focus on extracting insights and driving business 
decisions, while ML engineers must ensure their models actually work in production, adapting 
them to the new data, resource constraints, and real-world latency requirements. 

MediWatch became much more than a class project — for me it was a hands-on journey 
through the full ML lifecycle, from raw data to a deployed system that can adapt, scale, and 
improve itself over time. 

I’d like to thank Sayan for guiding us through the MLOps concepts, Joseph for supporting the 
capstone project discussions, and Dhiraj for helping with exercises. This was a challenging but 
deeply rewarding experience — one that made me feel ready to bring these practices into 
real-world settings. 

🚀 For me, the takeaway is clear: building models is important, but operationalizing them is 
where ML creates lasting impact. 

#MachineLearning #MLOps #HealthcareAI #DataScience #ModelDeployment #MLflow #Docker 
#Kubernetes #RayTune #XGBoost #AI #InterviewKickstart 

 


