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Foundation models in neuroscience

A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
m  See alsoICML 2025 Tutorial on Mechanistic Interpretability for Language Models
Mechanistic Interpretability for Al Safety: A Review

The Shapley value in machine learning

The Quest for the Right Mediator: Mechanistic Interpretability via Causal Mediation Analysis

Training Data Influence Analysis and Estimation: A Survey
A Primer on the Inner Workings of Transformer-based Language Models
The Explainability of Transformers: Current Status and Directions
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Position: Principles of Animal Cognition to Improve LLM Evaluations
Testing methods of neural systems understanding
Multi T bility Of Artificial N IN ks: | ing N .

Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness?
Assessing skeptical views of interpretability research

e Roadmaps
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How To Become A Mechanistic Interpretability Researcher
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List of Explainable Al papers

Awesome Interpretability in Large Language Models
inion list of mechanistic interpr ili r

A back-propagation programmed network tha II_A
What Does the Retina Know about Natural Scenes?

The emergence of multiple retinal cell types through efficient coding of natural movies

Emergence of simple-cell receptive fields by learning a sparse code for natural images
Performance-optimized hierarchical m Is predict neural r n in_higher vi | X

Context-dependent computation by recurrent dynamics in prefrontal cortex

e Complex models fit to neural data, including foundation models
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EEG
m Neuro-GPT: Towards A Foundation Model for EEG
fMRI

m Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data
m BrainLM: A foundation model for brain activity recordings
Single-cell electrophysiology
m Inferring single-trial neural lation dynami in ntial auto-en r
m Interpreting the retinal neural code for natural scenes: From computations to neurons

m A Unified, Scalable Framework for Neural Population Decoding
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Multi-session, multi-task neural decoding from distinct cell-types and brain regions
neralizable. real-time neural ing with hybri - m |

Representation learning for neural lation activity with neural ransformer.
Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity
Towards a "universal translator" for neural dynamics at single-cell, single-spike resolution
Neural encoding and decoding at scale
E Jat el of | activi i imul

m Compact deep neural network models of visual cortex
e Basic theories of transfer learning explaining how data from other sessions/subjects/species might help

o An analytic theory of generalization dynamics and transfer learning in deep linear networks
o Featur re fate; a theory of transfer learning in high-dimensional regression

Feature attribution: How does a network output depend on input features?

e Perturbation based approaches
O
Visualizing and Understanding Convolutional Networks
o A Unified Approach to Interpreting Model Predictions
o The many Shapley values for model explanation
e Gradient based approaches
o Deep inside convolutional networks: visualizing saliency maps
o Axiomatic Aftribution for Deep Networks (Integrated gradients)
o SmoothGrad: removing noise by adding noise
o Time-series attribution maps with reqularized contrastive learning

o TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation
e Approximation based approaches

o Why Should | Trust You?": Explaining the Predictions of Any Classifier (LIME)
o Significance Tests for Neural Networks
e Unified view and perspectives
o  Which Explanation Should | Choose? A Function Approximation Perspective
O
From Shapley Values to Generalized Additive Models and back

Data Attribution: Which training data points support a test prediction?

nderstanding Black-box Predictions via Influence Function

Data Shapley: Equitable Valuation of Data for Machine Learning
Datamodels: Predicting Predictions from Training Data
Scaling up
o Studying Large Language Model Generalization with Influence Functions
o TRAK: Attributing Model Behavior at Scale
o Datalnf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models

Discovery of Concepts

Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Towards automatic concept based explanations
We Can't Understand Al Using our Existing Vocabulary

Neural representational geometry underlies few-shot concept learning
A mathematical theory of semantic development in deep neural networks

Introduction to Interpretability in transformers

e Introductory articles
o Attention Is All You Need
o The lllustrated Transformer
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o Attention and kernel smoothing
e Early Interpretation of transformers

o A Mathematical Framework for Transformer Circui
m One-layer transformers aren’t equivalent to a set of skip-trigrams
m  Some common confusion about induction heads
o In-context Learning and Induction Heads
o RASP interpretation
o Thinking Like Transformers
o Tracr: Compiled Transformers as a Laboratory for Interpretability
e Connections to modern Hopfield model
o Hopfield networks is all n
D L : s
On a model of associative memory with huge storage capacity
Exponential capacity of dense associative memories
The Capacity of Modern Hopfield Networks under the Data Manifold Hypothesis
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Sparse Autoencoders

Towards Monosemanticity: Decomposing Language Models With Dictionary Learning
Interpreting Attention Layer Outputs with Sparse Autoencoders
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Interpretability lllusions with Sparse Autoencoders: Evaluating Robustness of Concepts
The Geometry of Concepts: Sparse Autoencoder Feature Structure
CRISP: Persistent Concept Unlearning via Sparse Autoencoders
Scaling up

o Scaling and evaluating sparse autoencoders

o Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet
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Causal analysis, editing and control

e Perturbation based approaches
o Direct and Indirect Effects
o Investigating gender bias in language models using causal mediation analysis

o Locating and Editing Factual Associations in GPT (Causal tracing)
o How nd interpr ivation hin

o Neuron Shapley: Discovering the Responsible Neurons

e Gradient based approaches
o Attribution patching: Activation patching at industrial scale

itation (COAR)

o Causal abstractions of neural networks

o Finding Alignments Between Interpretable Causal Variables and Distributed Neural Representations
o An Interpr ility lllusion for Activation Patchin

o A Reply to Makelov et al. (2023)'s "Interpretability Illusion" Arguments

o The Non-Linear Representation Dilemma: Is Causal Abstraction Enough for Mechanistic Interpretability?
o More model editing

o Editing factual knowledge in language models
o Fast model editing at scale
o Does localization inform editing? Surprising differences
o Model steering
o Representation engineering: A top-down roach to Al transparen
o Th metry of Truth: Emergent Linear Structur
o Truth is universal: Robust detection of lies in LLMs
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Steering Language Models With Activation Engineering
Inference-Time Intervention: Eliciting Truthful Answers from a Lan M |
i -of-Distribution neralization with Con Ablation Fin i

Evaluation of model explanations

e  Sanity checks f I
o OpenXAl: Towards a Transparent Evaluation of Model Explanations
e MIB: A Mechanistic Interpretability Benchmark
e Towards Unifying Interpretability and Control: Evaluation via Intervention
° r ing: a method for rigorously testing interpretability h th
Circuit di
o Initial Circuits Thread
e Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
° - - ?
e Sparse Feature Circuits: Discovering/Editing Interpretable Causal Graphs in LLMs
e Does Circuit Analysis Interpretability Scale? Multiple Choice Capabilities in Chinchilla
e Towards Automated Circuit Discovery for Mechanistic Interpretability
e Circuit Tracing: Revealin mputational Graphs in Language Models
e On the Biology of a Large Language Model
e Transcoders Find Interpretable LLM Feature Circuits
e Circuit Tracer
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The Computational Complexity of Circuit Discovery for Inner Interpretability

Local vs. Global Interpretability: A Computational Complexity Perspective
Model interpretability through the lens of computational complexity

Comparing representations across models

Similarity of Neural Network Representations Revisited

Lin

M ing from Im Tex

The Platonic Representation Hypothesis

Discovering and understanding interesting behaviors

Behavior discovery through “psychology” experiments on LLMs
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Language Models are Few-Shot Learners (In-context learning)
Language Models Don't Always Say What They Think (chain-of-thought unfaithfulness)

Taken out of context: On measuring situational awareness in LLMs
Alignment faking in large lan m |

Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
Introducing Docent: A system for analyzing and intervening on agent behavior

Understanding specific, interesting behaviors
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On the Emergence of Linear Analogies in Word Embeddings

Language Models use Lookbacks to Track Beliefs

Language Models Share Latent Grammatical Concepts Across Diverse Languages
Incremental Sentence Processing Mechanisms in Autoregressive Language Models

Emergent World Representations: Exploring a Sequence Model on a Synthetic Task
Proar m res for grokking via mechanistic interpretabilit

Acquisition of chess knowledge in AlphaZero
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ion les in explainabil

e Impossibility theorems for feature attribution
e The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
e Faithfulness vs. Plausibility: On the (Un)Reliability of Explanations from Large Language Models
e Adversarial attacks on Interpretations
o Interpretation of Neural Networks is Fragile
o Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Autom Interpr ility Agen

e A Multimodal Automated Interpretability Agent

Reasoning

Measurmq the Falthfulness of Thlnkmq Drafts in Larqe Reasonlnq Models

Thought Anchors: Which LLM Reasoning Steps Matter?

All for One: LLMs Solve Mental Math at the Last Token With Informatlon Transferred From Other Tokens
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