Applied Physics 293 Explainable Al Instructor: Surya Ganguli Stanford University

General review/perspective articles

- Review articles
 - Foundation models in neuroscience
 - A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
 - See also ICML 2025 Tutorial on Mechanistic Interpretability for Language Models
 - Mechanistic Interpretability for Al Safety: A Review
 - Post-hoc Interpretability for Neural NLP: A Survey
 - o The Shapley value in machine learning
 - The Quest for the Right Mediator: Mechanistic Interpretability via Causal Mediation Analysis
 - Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
 - o Towards Unified Attribution in Explainable AI, Data-Centric AI, and Mechanistic Interpretability
 - Explaining by removing: A unified framework for model explanation
 - Training Data Influence Analysis and Estimation: A Survey
 - A Primer on the Inner Workings of Transformer-based Language Models
 - The Explainability of Transformers: Current Status and Directions
 - Circuit analysis research landscape
- Perspective pieces
 - o Position: Principles of Animal Cognition to Improve LLM Evaluations
 - o <u>Testing methods of neural systems understanding</u>
 - Multilevel Interpretability Of Artificial Neural Networks: Leveraging Neuroscience
 - Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness?
 - Assessing skeptical views of interpretability research
- Roadmaps
 - How To Become A Mechanistic Interpretability Researcher
 - o Open problems in mechanistic interpretability
- Paper lists
 - List of Explainable Al papers
 - Awesome Interpretability in Large Language Models
 - o Opinionated list of mechanistic interpretability papers

Motivations: Foundation models in neuroscience: big data, big models, but understanding?

- Task trained models in neuroscience across the years
 - o A back-propagation programmed network that simulates posterior parietal neurons
 - What Does the Retina Know about Natural Scenes?
 - The emergence of multiple retinal cell types through efficient coding of natural movies
 - Emergence of simple-cell receptive fields by learning a sparse code for natural images
 - Performance-optimized hierarchical models predict neural responses in higher visual cortex
 - Context-dependent computation by recurrent dynamics in prefrontal cortex
- Complex models fit to neural data, including foundation models
 - o EEG
 - Neuro-GPT: Towards A Foundation Model for EEG
 - o fMRI
 - Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data
 - BrainLM: A foundation model for brain activity recordings
 - Single-cell electrophysiology
 - Inferring single-trial neural population dynamics using sequential auto-encoders
 - Interpreting the retinal neural code for natural scenes: From computations to neurons
 - A Unified, Scalable Framework for Neural Population Decoding

- Multi-session, multi-task neural decoding from distinct cell-types and brain regions
- Generalizable, real-time neural decoding with hybrid state-space models
- Representation learning for neural population activity with neural data transformers.
- Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity
- Towards a "universal translator" for neural dynamics at single-cell, single-spike resolution
- Neural encoding and decoding at scale
- Foundation model of neural activity predicts response to new stimulus types
- Compact deep neural network models of visual cortex
- Basic theories of transfer learning explaining how data from other sessions/subjects/species might help
 - An analytic theory of generalization dynamics and transfer learning in deep linear networks
 - o Features are fate: a theory of transfer learning in high-dimensional regression

Feature attribution: How does a network output depend on input features?

- Perturbation based approaches
 - Visualizing and Understanding Convolutional Networks
 - o A Unified Approach to Interpreting Model Predictions
 - The many Shapley values for model explanation
- Gradient based approaches
 - o Deep inside convolutional networks: visualizing saliency maps
 - Axiomatic Attribution for Deep Networks (Integrated gradients)
 - SmoothGrad: removing noise by adding noise
 - o Time-series attribution maps with regularized contrastive learning
 - o TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation
- Approximation based approaches
 - Why Should I Trust You?": Explaining the Predictions of Any Classifier (LIME)
 - Significance Tests for Neural Networks
- Unified view and perspectives
 - Which Explanation Should I Choose? A Function Approximation Perspective
 - o From Shapley Values to Generalized Additive Models and back

Data Attribution: Which training data points support a test prediction?

- <u>Understanding Black-box Predictions via Influence Functions</u>
- Data Shapley: Equitable Valuation of Data for Machine Learning
- Datamodels: Predicting Predictions from Training Data
- Scaling up
 - Studying Large Language Model Generalization with Influence Functions
 - o TRAK: Attributing Model Behavior at Scale
 - DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models

Discovery of Concepts

- Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
- Towards automatic concept based explanations
- We Can't Understand Al Using our Existing Vocabulary
- Neural representational geometry underlies few-shot concept learning
- A mathematical theory of semantic development in deep neural networks

<u>Introduction to Interpretability in transformers</u>

- Introductory articles
 - o Attention Is All You Need
 - o The Illustrated Transformer

- Attention and kernel smoothing
- Early Interpretation of transformers
 - o A Mathematical Framework for Transformer Circuits
 - One-layer transformers aren't equivalent to a set of skip-trigrams
 - Some common confusion about induction heads
 - o <u>In-context Learning and Induction Heads</u>
- RASP interpretation
 - Thinking Like Transformers
 - o Tracr: Compiled Transformers as a Laboratory for Interpretability
- Connections to modern Hopfield model
 - Hopfield networks is all you need
 - Dense associative memory for pattern recognition
 - o On a model of associative memory with huge storage capacity
 - o Exponential capacity of dense associative memories
 - o The Capacity of Modern Hopfield Networks under the Data Manifold Hypothesis

Sparse Autoencoders

- Towards Monosemanticity: Decomposing Language Models With Dictionary Learning
- Interpreting Attention Layer Outputs with Sparse Autoencoders
- Towards Principled Evaluations of Sparse Autoencoders for Interpretability and Control
- Interpretability Illusions with Sparse Autoencoders: Evaluating Robustness of Concepts
- The Geometry of Concepts: Sparse Autoencoder Feature Structure
- CRISP: Persistent Concept Unlearning via Sparse Autoencoders
- Scaling up
 - Scaling and evaluating sparse autoencoders
 - o Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet

Causal analysis, editing and control

- Perturbation based approaches
 - o <u>Direct and Indirect Effects</u>
 - Investigating gender bias in language models using causal mediation analysis
 - Locating and Editing Factual Associations in GPT (Causal tracing)
 - o How to use and interpret activation patching
 - Neuron Shapley: Discovering the Responsible Neurons
- Gradient based approaches
 - Attribution patching: Activation patching at industrial scale
- Approximation based approaches
 - o Decomposing and Editing Predictions by Modeling Model Computation (COAR)
- Causal abstractions
 - Causal abstractions of neural networks
 - o Finding Alignments Between Interpretable Causal Variables and Distributed Neural Representations
 - o An Interpretability Illusion for Subspace Activation Patching
 - o A Reply to Makelov et al. (2023)'s "Interpretability Illusion" Arguments
 - The Non-Linear Representation Dilemma: Is Causal Abstraction Enough for Mechanistic Interpretability?
- More model editing
 - Editing factual knowledge in language models
 - Fast model editing at scale
 - Does localization inform editing? Surprising differences
- Model steering
 - o Representation engineering: A top-down approach to AI transparency
 - The Geometry of Truth: Emergent Linear Structure
 - o Truth is universal: Robust detection of lies in LLMs

- Steering Language Models With Activation Engineering
- o Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
- o Steering Out-of-Distribution Generalization with Concept Ablation Fine-Tuning

Evaluation of model explanations

- Sanity checks for saliency maps
- OpenXAI: Towards a Transparent Evaluation of Model Explanations
- MIB: A Mechanistic Interpretability Benchmark
- Towards Unifying Interpretability and Control: Evaluation via Intervention
- Causal Scrubbing: a method for rigorously testing interpretability hypotheses

Circuit discovery

- Initial Circuits Thread
- Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
- How does GPT-2 compute greater-than?
- Sparse Feature Circuits: Discovering/Editing Interpretable Causal Graphs in LLMs
- Does Circuit Analysis Interpretability Scale? Multiple Choice Capabilities in Chinchilla
- Towards Automated Circuit Discovery for Mechanistic Interpretability
- Circuit Tracing: Revealing Computational Graphs in Language Models
- On the Biology of a Large Language Model
- <u>Transcoders Find Interpretable LLM Feature Circuits</u>
- Circuit Tracer

Computational complexity issues in interpretability

- The Computational Complexity of Circuit Discovery for Inner Interpretability
- Local vs. Global Interpretability: A Computational Complexity Perspective
- Model interpretability through the lens of computational complexity

Comparing representations across models

- Similarity of Neural Network Representations Revisited
- Linearly Mapping from Image to Text Space
- The Platonic Representation Hypothesis

Discovering and understanding interesting behaviors

- Behavior discovery through "psychology" experiments on LLMs
 - Language Models are Few-Shot Learners (In-context learning)
 - o Language Models Don't Always Say What They Think (chain-of-thought unfaithfulness)
 - o Taken out of context: On measuring situational awareness in LLMs
 - Alignment faking in large language models
 - Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
 - o Introducing Docent: A system for analyzing and intervening on agent behavior
- Understanding specific, interesting behaviors
 - On the Emergence of Linear Analogies in Word Embeddings
 - Language Models use Lookbacks to Track Beliefs
 - Language Models Share Latent Grammatical Concepts Across Diverse Languages
 - Incremental Sentence Processing Mechanisms in Autoregressive Language Models
 - Emergent World Representations: Exploring a Sequence Model on a Synthetic Task
 - Progress measures for grokking via mechanistic interpretability
 - Acquisition of chess knowledge in AlphaZero

Cautionary tales in explainabilty

- Impossibility theorems for feature attribution
- The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
- Faithfulness vs. Plausibility: On the (Un)Reliability of Explanations from Large Language Models
- Adversarial attacks on Interpretations
 - Interpretation of Neural Networks is Fragile
 - o Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods

Automated Interpretability Agents

A Multimodal Automated Interpretability Agent

Reasoning

- On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models
- Measuring the Faithfulness of Thinking Drafts in Large Reasoning Models
- Thought Anchors: Which LLM Reasoning Steps Matter?
- All for One: LLMs Solve Mental Math at the Last Token With Information Transferred From Other Tokens
- Neuron Activation as a Unified Lens to Explain Chain-of-Thought Eliciting Arithmetic Reasoning of LLMs