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General review/perspective articles

o Review articles
o Foundation models in neuroscience
o A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
m  See alsoICML 2025 Tutorial on Mechanistic Interpretability for Language Models
Mechanistic Interpretability for Al Safety: A Review

The Shapley value in machine learning

The Quest for the Right Mediator: Mechanistic Interpretability via Causal Mediation Analysis

Training Data Influence Analysis and Estimation: A Survey
A Primer on the Inner Workings of Transformer-based Language Models
The Explainability of Transformers: Current Status and Directions
o Circul . h land
e Perspective pieces
o Position: Principles of Animal Cognition to Improve LLM Evaluations
o Testing methods of neural systems understanding
o Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness?
o Assessing skeptical views of interpretability research
e Roadmaps
o How To Become A Mechanistic Interpretability Researcher
o Open problems in mechanistic interpretability
o Al Security Institute Call for Interpretability Research
e Paper lists

o List of Explainable Al papers
o Awesome Interpr ility in Large Lan M |

o Opinionated list of mechanistic interpretability papers
e Conferences

o 2nd New England mechanistic interpretability workshop
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e Task trained models in neuroscience across the years

A back-propagation programmed network that simulates posterior parietal neurons
What D he Retina Know Natural nes?

The emergence of multiple retinal cell types through efficient coding of natural movies

Emergence of simple-cell receptive fields by learning a sparse code for natural images
Performance-optimized hierarchical models predict neural responses in higher visual cortex

Context-dependent computation by recurrent dynamics in prefrontal cortex
e Complex models fit to neural data, including foundation models
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o EEG
m  Neuro-GPT: Towards A Foundation Model for EEG
o fMRI
[ ] If- rvi Learning of Brain Dynamics from Br Neuroimaging Dat

m BrainLM: A foundation model for brain activity recordings
o Single-cell electrophysiology
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Inferring single-trial neural population dynamics using sequential auto-encoders
Interpreting the retinal neural for natural nes: From com tion neuron

A Unifi lable Framework for Neural P lation D in
Multi-session, multi-task neural decoding from distinct cell-types and brain regions

Generalizable, real-time neural decoding with hybrid state-space models

Neural encoding and decoding at scale

] m t neural network m Is of vi | cortex

Foundation model of neural activity predicts response to new stimulus types

Basic theories of transfer learning explaining how data from other sessions/subjects/species might help
o An analytic theory of generalization dynamics and transfer learning in deep linear networks

o Features are fate: a theory of transfer learning in high-dimensional regression

Feat ttribution: How d I I loni [ 0

Perturbation based approaches

o Visualizing and Understanding Convolutional Networks
o A Unified Approach to Interpreting Model Predictions
o The many Shapley values for model explanation

Gradient based approaches
o Deep inside convolutional networks: visualizing saliency maps
o Axiomatic Attribution for Deep Networks (Integrated gradients)
o SmoothGrad: removing noise by adding noise

o Time-series attribution maps with regularized contrastive learning

o TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation

Approximation based approaches

o  Why Should | Trust You?": Explaining the Predictions of Any Classifier (LIME)

o  Significance Tests for Neural Networks

Unified view and perspectives

o Which Explanation Should | Choose? A Function Approximation Perspective

o From Shapley Values to Generalized Additive Models and back

Data Attribution: Which training data points support a test prediction?

Understanding Black-box Predictions via Influence Functions
Data Shapley: Equitable Valuation of Data for Machine Learning

D lels: Predicting Predictions from Training D
Scaling up

o Studying Large Language Model Generalization with Influence Functions

o TRAK: Attributing Model Behavior at Scale

o Datalnf: Efficiently Estimating Data Influence in L oRA-tuned LI M

Discovery of Concepts

nd Diffusion Model

Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV

Towards automatic concept based explanations

We Can't Understand Al Using our Existing Vocabulary
Neural representational geometry underlies few-shot concept learning

A mathematical theory of semanti velopment in neural network

Introduction to Interpretability in transformers
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e Introductory material
o Attention Is All You Need

o The lllustrated Transformer
o 3bluelbrown videos:

m Ch 5: Transformers, the tech behind LLMs
m Ch 6: Attention in transformers. step-by-step
m  Ch 7: How might LLMs store facts
o Formal algorithms for transformers
e Connections to earlier and simpler ideas
o Attention and kernel smoothing
o Kernel rearession t tive filters, and attention
e Early Interpretation of transformers (Induction Heads)
o A Mathematical Framework for Transformer Circuits
m  One-layer transformers aren’t equivalent to a set of skip-trigrams
m Some common confusion about induction heads
o In- I . | Induction H
o Induction heads illustrated
o RASP interpretation
o Thinking Like Transformers
o Tracr: Compiled Transformers as a Laboratory for Interpretabilit
e Connections to modern Hopfield model
o Hopfield networks is all you need
Dense associative memory for pattern recognition
On a model of associative memory with huge storage capacity

Exponential capacity of dense associative memories
The Capacity of Modern Hopfield Networks under the Data Manifold Hypothesis
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Sparse Autoencoders

T ls of .
Towards Monosemanticity: Decomposing Language Models With Dictionary Learning
Interpreting Attention Layer Qutputs with Sparse Autoencoders

Towards Principled Evaluations of Sparse Autoencoders for Interpretability and Control
Interpr: ility lllusions with rse A n rs: Evaluating R n f Con

The Geometry of Concepts: Sparse Autoencoder Feature Structure
CRISP: Persistent Concept Unlearning via Sparse Autoencoders
Scaling up

o Scaling and evaluating sparse autoencoders

Causal analysis, editing and control

e Perturbation based approaches
o Dir nd Indirect Effi
o Investigating gender bias in language models using causal mediation analysis
o Locating and Editing Factual Associations in GPT (Causal tracing)
o How to use and interpret activation patching
o Neuron Shapley: Discovering the Responsible Neurons
e Gradient based approaches

o Attribution patching: Activation patching at industrial scale
e Approximation based approaches

o Decomposing and Editing Predictions by Modeling Model Computation (COAR)

e Causal abstractions
o Causal abstractions of neural networks
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https://www.lesswrong.com/posts/nJqftacoQGKurJ6fv/some-common-confusion-about-induction-heads
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://www.perfectlynormal.co.uk/blog-induction-heads-illustrated
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2301.05062
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https://arxiv.org/abs/1606.01164
https://link.springer.com/article/10.1007/s10955-017-1806-y
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https://transformer-circuits.pub/2023/monosemantic-features
https://arxiv.org/abs/2406.17759
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https://cdn.openai.com/papers/sparse-autoencoders.pdf
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https://arxiv.org/abs/2202.05262
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Finding Alignments Between Interpretable Causal Variables and Distributed Neural Representations
An Interpr ility lllusion for Activation Patchin

A Repl Makelov [. (2023)'s "Interpr: ility lllusion" Argumen
o The Non-Linear Representation Dilemma: Is Causal Abstraction Enough for Mechanistic Interpretability?
More model editing
o Editing factual knowledge in language models
o E el editi
o Does localization inform editing? Surprising differences
Model steering
o Representation engineering: A top-down approach to Al transparency
Th metry of Truth: Emergent Linear Structur
Truth i . LR . f lies in LLM
Steering Language Models With Activation Engineering
Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
Steering Out-of-Distribution Generalization with Concept Ablation Fine-Tuning
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Evaluation of model explanations

Sanity checks for saliency maps
OpenXAl: Towards a Transparent Evaluation of Model Explanations
MIB: A Mechanistic | bility B I

Towards Unifying Interpretability and Control: Evaluation via Intervention
Causal Scrubbing: a method for rigorously testing interpretability hypotheses

Circuit discovery

Initial Circuits Thread
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small

How does GPT-2 compute greater-than?

Sparse Feature Circuits: Discovering/Editing Interpretable Causal Graphs in LLMs

Towards Automated Circuit Discovery for Mechanistic Interpretability
Circuit Tracing: Revealing Computational Graphs in Language Models

On the Biology of a Large Language Model
Tran rs Find Interpr lelLLMF re Circui

Circuit Tracer

Computational complexity issues in interpretability

m

The C . L lex f Circuit Di for | | bili
Local vs. Global Interpretability: A Computational Complexity Perspective
Model interpretability through the lens of computational complexity

ring representations across model

Similarity of Neural Network Representations Revisited
Linearly Mapping from Image to Text Space
The Platonic Representation Hypothesis

Discovering and understanding interesting behaviors

Behavior discovery through “psychology” experiments on LLMs
o Lan Models are Few-Shot Learners (In-context learning)
o Language Models Don't Always Say What They Think (chain-of-thought unfaithfulness)
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o Taken out of context: On measuring situational awareness in LLMs

o Alignment faking in large lan m |

o Emergent Misalignment: Narrow finetunin n pr roadly misaligned LLM
o Introducing Docent: A system for analyzing and intervening on agent behavior

e Understanding specific, interesting behaviors

o On the Emergence of Linear Analogies in Word Embeddings

Language Models use Lookbacks to Track Beliefs

Language Models Share Latent Grammatical Concepts Across Diverse Languages
Incremental Sentence Processing Mechanisms in Autoregressive Language Models
Emergent World Representations: Exploring a Sequence Model on a Synthetic Task
Proar m res for grokking via mechanistic interpretabilit

Acquisition of chess | e in AlohaZ

O O O O O O

Cautionary tales in explainabilty

| ibil for f ibut
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Faithfulness vs. Plausibility: On the (Un)Reliability of Explanations from Large Language Models
Adversarial attacks on Interpretations

o Interpretation of Neural Networks is Fragile

o ooling LIME and SHAP: Adversarial A

Automated Interpretability Agents

Reasoning

On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models

Measuring the Faithfulness of Thinking Drafts in Large Reasoning Models

Thought Anchors: Which LLM Reasoning Steps Matter?

All for One: LLMs Solve Mental Math at the Last Token With Information Transferred From Other Tokens
Neuron Activation as a Unified Lens to Explain Chain-of-Thought Eliciting Arithmetic Reasoning of LLMs
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