
Improve configuration framework

[HBASE-13936]

Current System
Issues with current system
Proposed solutions
Moving from Configuration to ConfigurationManager
Testing
Rough plan of attack
Open questions
Meeting on 20150625

Motivation

// TODO

Current System

●​ Uses Configuration class from Hadoop project to manage configurations. Getter and
setters used to access values - get*(“property.name.as.string”, defaultValue) and
set*(“property.name.as.string”, newValue) where * can be Int, Boolean, String, etc.

●​ HBaseConfiguration class: Loads configurations from hbase-defaults.xml (present in
hbase-common) and hbase-site.xml. Returns Configuration object.

●​ Configuration object is passed around, copies are made and values are changed using
set*() function.

●​ ConfigurationManager class only handles updates to dynamic configurations. Update
signal is received via rpc method RSRpcServices.updateConfiguration.
ConfigurationManager maintains a list of objects of classes which implement
ConfigurationObserver interface. On receiving update signal, ConfigurationManager
loads the new configuration and calls each observer’s overridden method
onConfigurationChange() which reloads the object’s state based on new configuration.

●​ Some jiras related to dynamic configuration changes: HBASE-3909, HBASE-8302

Issues with current system

1)​ dynamic configuration documentation is very poor
a)​ no list of dynamic configs
b)​ shell functionality not well documented

2)​ Bad design for registering observers​
example from HMaster​
// in function initializeZKBasedSystemTrackers()​
this.balancer = LoadBalancerFactory.getLoadBalancer(conf);​
​

// 200 lines later in another function finishActiveMasterInitialization()​

https://issues.apache.org/jira/browse/HBASE-3909
https://issues.apache.org/jira/browse/HBASE-8302

confManager.registerObserver(this.balancer);​
​
Why should a class creating Foo object care which configs are used by Foo internally?
So also it should not have to know that Foo needs to be registered as an observer.
There are few dynamic configs right now, but as more are added, more objects will need
to be registred increasing chance of adding major bugs because of ‘forgetting’ to
register.​
​
Solution: Objects should register themselves with ConfigurationManager to get updates.

3)​ Observers inherit from ConfigurationObserver and implement onConfigurationChange()
to handle updates. This has also led to one-function-catches-all-updates situation which
has it’s own drawbacks explained below.

a.​ Easy to break functionality of an existing dynamic configuration by adding new
logic which uses it but forgetting to handle updates to its value.

b.​ Tightly couples unrelated configurations

onConfigurationChange(conf) {
 x = conf.get(X);
 y = conf.get(Y);
 z = conf.get(Z);

}

In the above example, if updating Y fails and an exception is thrown, updates to Z
and other downstream configurations will be skipped.​

In class Foo:​
onConfigurationChange(conf) {
 x = conf.get(X);
 y = conf.get(Y);
 z = conf.get(Z);
}

In class Bar:
onConfigurationChange(conf) {
 z = conf.get(Z);
 y = conf.get(Y);
 x = conf.get(X);
}

​
Moreover, if a set of dynamic configurations is being updated in multiple places,
it is possible that some configurations get updated only partially depending on
relative ordering with the failing configuration. For example, in above table if Y
fails, X and Z will only be partially updated.

c.​ Since failures may throw exceptions, updating multiple configurations and
reporting success / failure messages for each configuration using single function
is not possible.

d.​ Can not support filtering configurations. For e.g. it is not possible to update only
foo.bar, or foo.*

Solution: Update configurations in isolated functions. In such a case, inheritance won’t
be the right design. More details below.

4.​ Inadequate shell user experience (commands: update*config())

a.​ no progress updates like

i.​ which machines are pending/in progress/done/failed?
ii.​ which configurations’ updates are pending/in progress/done/failed?

b.​ no overall success or failure reporting

c.​ (minor) no command like `update_config ‘X = Y’` to ephemerally update specific
configuration.​
(non-persistent configuration changes are generally bad idea because they can
easily introduce bugs and are hard to debug since changes vanish on cluster
restart, nonetheless, such a function is really useful to SREs in some cases)

Proposed solutions

1)​ Improve documentation
a)​ document list of dynamic configuration, automatically update the list from code.
b)​ Update Apache HBase Reference Guide

2)​ Improve update*config() shell commands: On executing command, show following
relevant information updates

a)​ changed configurations
i)​ if the configuration is dynamic: old and new value
ii)​ if the configuration is not dynamic: show warning that it will be ignored

b)​ progress update
i)​ by machine: which are pending/in progress/done/failed
ii)​ by configuration: which pending/in progress/done/failed
iii)​ overall success/failure

3)​ Code changes

a)​ Add ConfigurationProperty<T> class which will store all information related to a
configuration like name, default value, description, units, etc. It will be single
source of truth for any information related to a configuration. Aims to solve
following problems in current code:

i)​ Different inconsistently named variables for configuration name and
default value

ii)​ Sometimes, these declarations are spread randomly in the code
iii)​ Sometimes, different default values are used from one call of get*() to

another.
iv)​ No type check when setting/getting values. For example, setInt() call can

be made with a configuration which is supposed to be a boolean and it
will succeed thereby corrupting the configuration.

b)​ Add new functionality to ConfigurationManager.

i)​ New getters and setters : getT(ConfigurationProperty<T>) and
setT(ConfigurationProperty<T>, newValue). No need to specify default
value with each call. This will also check at compile time that type of the
function and the configuration value are same.

ii)​ On configuration change, detect which dynamic configurations changed
and report the old and new values to user (to prevent unwanted changes).

iii)​ On configuration change, detect changes to non-dynamic configuration
and report to user that they’ll be ignored. This can save the user a lot of
trouble from having to figure out why certain changes are not taking
effect.

c)​ Add new function: get*(property, update_handler)​
To avoid ‘forgetting’ handling of updates, value of dynamic configurations should
be queried via special function which takes in a non-null callback as third
argument which will be called if and only if “foo.bar" configuration changes.​
No changes needed for non-dynamic configurations. However, if get*() (single
argument non-handler version) is called with a dynamic configuration, it can
return null and/or throw exception.

d)​ Instead of a single function to update all configuration

(onConfigurationChange()), design should support updating single
configuration/set of configurations in isolation. For example, UpdateFooBar()
function below. This will:

i)​ allow configuration level success/failure reporting. eg.
foo.bar successfully updated.
zing.pooh update failed to update in handler ‘winnieThePooh’
the.lion.king failed to update in handler ‘Simba’

ii)​ prevent tight coupling with other configuration updates
iii)​ [stretch] allow filtering of which configuration to update.

​

class ExampleConfigs {​
 public static ConfigurationProperty<Boolean> ABC_XYZ =​
 new ConfigurationProperty<>(“abc.xyz”, true);​
 public static ConfigurationProperty<Boolean> FOO_BAR =​
 new ConfigurationProperty.Builder<>(“foo.bar”, false)​
 .setIsDynamic().build();​
}
​

class ExampleUse {​
 ...​
 void someFunction(..) {​
 // getting non-dynamic config, no handler argument.​
 confManager.getBoolean();​

 ...​
 // getting dynamic config​
 confManager.getBoolean(, UpdateFooBar);​
 }​
​

 class ConfigurationUpdater {​
 // updates state related to ‘foo.bar’ configuration.​
 void UpdateFooBar(Configuration conf) {....}​
 };​
 ...​
}​

If a component of an object’s state depends on multiple configurations, single
function can be added as the handler for all those configurations. For eg.​
void updateFromXYZ(conf) {​
 // update foo component from X, Y and Z configurations.
}​
...

Then all X, ..., Z configs will have updateFromXYZ() as the handler.
ConfigurationManager can de-duplicate references to it and call it only once.

e)​ Another design change being promoted is ‘Keep configurations in the right

scope’. For example, client code shouldn’t have access to server-only configs
and vice versa. Similarly, master code should not have access to regionserver
only configs and vice-versa. This means ConfigurationProperty declarations
should be placed in the right scope.​
There will be three main classes - {Common, Server, Client}Configurations which
will collect ConfigurationProperty declarations from code under hbase-common,
hbase-server and hbase-client respectively using Reflections library. Server and
client instances can then use CommonConfigurations to get their respective full
set of configurations.​
So HBaseConfiguration will be deprecated but since it is interface public, it will be
somehow supported for 1.x releases.

f)​ Update configuration servlet to show appropriate dynamic configuration
information in web UI.

[stretch] When updateconfig() is executed, report anomalies in configuration changes detected
across servers/RS as warnings. For example. foo.bar changed to 10 on one machine and to
100 on all other machines. Probably a misconfiguration?

[stretch, if easily possible] Compile time check to verify right getConf() function is​
called for dynamic and non-dynamic configurations.

Moving from Configuration to ConfigurationManager

This is no easy task. It’ll take few months and efforts from everyone to accomplish. In many
cases, the switch won’t be easy and will thus required progressive smaller changes. Some of
these are highlighted below.:

Case 1:
HConstants contains
public static FOO_BAR = “foo.bar”;
public static int FOO_BAR_DEFAULT = ...;

Since HConstants is public interface, the right change here can be:​
i. Create a new ConfigurationProperty in the right scope​
class FooConfigs {​
 ...​
 public static ConfigurationProperty<Integer> FOO_BAR =​
 new ConfigurationProperty<>(​
 HConstants.FOO_BAR, HConstants.FOO_BAR_DEFAULT);​
 ...​
}

ii. Add deprecated annotations in HConstants.
@Deprecated​
public static FOO_BAR = “foo.bar”;
@Deprecated
public static int FOO_BAR_DEFAULT = ...;

iii. Replace uses of HConstants.FOO_BAR in other places with​
FooConfigs.FOO_BAR.getName() and similarly for default value.

Case 2:
conf.getType(“parameter”, defaultValue);
Changes:
i. Create a new ConfigurationProperty in the right scope​
class BarConfigs {​
 ...​
 public static ConfigurationProperty<Type> PARAM =​
 new ConfigurationProperty<>(“parameter”, defaultValue);​
 ...​
}​
​
ii. Change function call to

conf.getType(BarConfigs.PARAM.getName(),​
 BarConfigs.PARAM.getDefaultValue());

iii. If possible, change the Class/Function to keep/accept ConfigurationManager as
member/parameter instead of Configuration and change the call to
confManager.getType(BarConfigs.PARAM);​

Case 3:
conf.getType(“parameter”, value1)
conf.getType(“parameter”, value2)
Multiple get*() of same property with different default values.

This is one reason why current design is bad. Multiple defaults are confusing. It’s very possible
to have a case where no single value works as default for the property. In such a situation, a
better alternative might be to have a sentinel value to denote that property is not explicitly set,
and then choose the right value depending on situation. Something like:

// -1 as sentinal​
... FOO_BAR = new ConfigurationProperty<>(“foo.bar”, -1);​
if (confManager.getType(SomeConfigs.FOO_BAR) ==​
 SomeConfigs.FOO_BAR.getDefaultValue()) {​
 // set to other values on case by case basis​
}​
Drawback: Choosing sentinel value. Empty string or -ve values should work most of the time.

TODO : add other cases when encountered.

When most/all of the uses have been moved to ConfigurationProperty, class/functions can be
changed to keep/accept ConfigurationManager object instead of Configuration.

Testing

TODO: how can this framework be tested.
some basic ideas:
- add check: handler registered for only dynamic config X should not call getConf(Y) where Y is
another dynamic config.
- no duplicate names in ConfigurationProperty

Rough plan of attack

1) HBASE-13957
-​ Add ConfigurationProperty and new functions to ConfigurationManager.
-​ no changes related to dynamic configs will be made
-​ only few configurations will be moved to new design initially

2) Add components of new dynamic config framework: get*(conf, handler), Map<conf,
handlers>, etc and use this new functionality in classes changed above in step 1.
Move ConfigurationManager to hbase-common.

3) Move all classes which are using dynamic configs to new framework

4) Delete old dynamic configs framework: ConfigurationObserver

5) Improve shell commands reporting. Maybe add new command “update_config ‘X = Y’”

6) Testing framework for dynamic configs

7) Misc: automate ConfigurationProperty → Ref Guide configuration documentation (when all
configs have been added as ConfigurationProperty, we should be able to delete
hbase-default.xml).

8) Document dynamic configs framework

Open questions

1)​ Updates will happen one configuration at a time (iterate over registered handlers)
instead of one component at a time (onConfigurationChange() updating all configs
together). Can this lead to any issues?

2)​ Configuration changes which are not backward compatible should be avoided. For

example, when a region moves from an updated RS to a non-updated RS, it can cause
troubles. More thoughts?

Meeting on 20150625

Look for Reconfigurable in Hadoop. A new Hadoop ‘framework’.

Talk to Darren in CM team on what ideal config would be.

In the config., actually state what max and min are, etc…. allowable values. A good one is

making sure they enter milliseconds rather than seconds and so on.

How to do ENUMS in Configuration?

HBASE-13936 Configuration
Tooling.

Can we simplify? Matteo points out YAML or java property files is not right direction.. does not

solve the problem.

Come up w/ design and pattern, do current dynamics, add a few more than do piecemeal.

Configuration scoping by package.

Survey of other projects doing configuration.

Find for appy offline the nicolas configuration stuff.

Can we go even simpler

Config, Rule check, and Action.

Reflection to figure the method to call.. .but have to pass a String…. for method name.

Can’t have separate config class because ‘actions’ want to mess with internals.

Startup crash the server but when dynamic config we want to reject.

At runtime, can see what is bad….. it is easy in UI.

Tool to check.

So, add dry-run of suggested configs. Check basic stuff. Flag configurations as resources.

Numeric and string.

Resource category, which is server or process level.

An example. Instead.

Who is responsible for parse, type check?

https://issues.apache.org/jira/browse/HBASE-13936

Ignore stuff below
- partition configs into master/rs/both: for users to better understanding effects of dynamically
changing configs, and generally good too
- choose top 20 configs to make dynamic
- working: script (shell?) sends signal to all masters/RS (serial/parallel?) (exits/waits to report?).
See how it’s done today.

- inner class ConfigurationUpdater to keep all functions which’ll handle conf updated. will keep
pointer to outer class
- outer class: add initialize() method which will first instantiate ConfigurationUpdater and then
other components depended on dynamic confgs. Handlers will be CU’s function

	Improve configuration framework
	[HBASE-13936]
	Motivation
	Current System
	Issues with current system
	Proposed solutions
	Moving from Configuration to ConfigurationManager
	Testing
	Rough plan of attack
	Open questions
	Meeting on 20150625

