Google Summer of Code

ANIMATION IMPROVEMENTS

GSOC 2021 PROPOSAL FOR MIT APP INVENTOR

r-MIT

APP INVENTOR

Proposed By: Himanshu Garg
(@Himanshu2107)

https://github.com/Himanshu2107

ABSTRACT and PROJECT GOALS

The animation portion of the MIT Applnventor, which includes the Canvas,
ImageSprite and Ball components, currently has a lot of room for
improvement. For the purpose of this project | propose to improve these
aspects of MIT Applnventor:

1. Setting origin coordinates of an image sprite by the user.

2. Improving the algorithm used to detect collisions between sprites.

IMPLEMENTATION

1. Setting origin coordinates of an image sprite by the user.

Currently the origin coordinates of an image sprite are set to the top left
corner. In the case of Ball, itis intuitive to have the origin at center, hence
there exists a CenterAtOrigin property that implicitly lets the user decide
whether the origin is at the top left corner or at the center of the ball. But in the
case of ImageSprites, we have no idea about the contents of the image.
Hence, a similar property does not make much sense. It is a desired feature
that lets the user decide where he/she wants the origin to be, i.e. decide which
part of the sprite dothe x and y coordinates refer to. To implement this, |
propose to include a draggable marker that would be a part of the
component’s Ul in the designer. | would modify a set of properties (like xUser,
yUser) in response to a drag and drop operation in the designer. Apart from
having the marker as a part of the Ul, | propose to add properties OriginX
and OriginY inthe designer. The OriginX and OriginY referto
coordinates of the unit scale from the top left corner of the sprite. That is,
(OriginX, OriginY) of (8, ©) would be the top-left corner, (6.5, 0.5)

would be the centerand (1, 1) be the bottom-right corner. Internally we

would use u and v for these properties as they are typical in computer
graphics. Whenever the user performs a drag and drop operation on the
marker, the u and v coordinates would be updated. Updating the u, v
coordinates would, in turn, change the position of the marker in the designer.
This is similar to how the 1latitude and longitude properties are changed

inthe Marker component.

The idea behind using unit coordinates is that, this way the position of the
origin with respect to the top left corner remains consistent on scalar
changes, or changes in the image being displayed. In addition, this would
allow the user to select the center, bottom-right corner or bottom-left corner of
the sprite without hassle. To maintain backward compatibility, the default
position of the origin (and hence the marker) would be the top left corner. To

change these things programmatically, a few blocks could also be added.

Technical Details
The following discussion is on the assumption that we are extending this
functionality only to ImageSprites. If the maintainers decide to include Ball,

changes would be similar.

In effect we are adding two new properties to ImageSprites,viz. OriginX
and OriginY. These refer to the coordinates of the unit scale with respect
to the top left corner of the component. The draggable marker is just a way to
edit these properties visually and more interactively. The draggable marker will

be a part of the component'’s Ul that calls specific methods on specific events.

To associate these properties with the component we need to follow some

general steps which include:

« Add variables u and v to store the values of unit coordinates.

* To cache the values of the origin coordinates, add variables OriginX,
OriginY.

+ Add setters and getters for OriginX and OriginY.

+ We will need to convert between the user set origin coordinates and
coordinates of the top left corner. To do this add methods
xLeftToUser() and xUserToLeft() (similarly fory). The use of unit

coordinates would vastly simplify these methods.

Changing the origin coordinates affects many other methods in the
component’s class, as many calculations and changes are done according to
the position of the origin. Some of these methods that may also need
modifications include (non-exhaustive list):

X(), updateX(), Y(), updateY(), moveTo(), PointTowards(),

PointInDirection(), MoveIntoBounds().

Scaling the ImageSprite around different origins has different effects hence

Height() and Width() would also require modifications.

As the marker is part of the component’s Ul in the designer, changes are also

required in the MockComponent associated with the component.

First we will need to associate an image with the marker, which will be its
visual representation. Next, we need to make that image draggable and set up
appropriate events and event handlers to that image. In the event handler that
handles the drop of the marker, we will note the coordinates where the marker
is dropped. From these coordinates we can calculate the u and v values for
that point. Next we will call

getProperties().changePropertyValue(String PropertyName,

String value); for u and v to change their values. Thus our draggable

marker is implemented.

After adding the draggable marker functionality a few more changes are
required to the mock component which include:
* Add variable double u and double v to store the position of origin
wrt top-left corner.
+ Add strings
private static final String PROPERTY_NAME_ORIGINX

“OriginX”
private static final String PROPERTY_NAME_ORIGINY

“OriginY”

* Override resizeImage() to ensure scaling is done while keeping origin
consistent.

* Add methods private void setOriginYProperty() and
private void setOriginXProperty(). Changesto OriginY and
OriginX lead to changes in the position of the marker within the image
sprite. The code that changes the position of the marker goes here.

+ Update onPropertyChange(), getX0ffset(), getYOffset().

Now we have added the functionality to the component’s android as well as
designer representation and functionality. The final step is updating the

version numbers in many classes.
Apart from updating the code, updating the documentation is also important. |
will dedicate some of my time to ensure that documentation is appropriately

updated.

2. Improving the algorithm used to detect collisions between sprites.

The method colliding(Sprite spritel, Sprite sprite2) is
responsible for checking if two sprites collide. It does so by treating the
sprites as rectangles and checking for overlaps. The method creates
BoundingBox objects for both the sprites and if they intersect destructively,
loops over all the points in the intersected area to check if the sprites collide.
The xLeft, yTop, Width and Height attributes of the sprites are used
to create the bounding boxes. In the current scenario, if the Rotated property
of ImageSprite is setto true, the component would be rotated to point to
the direction of the heading attribute. This is done in the onDraw() method
of ImageSprite. The method does so by drawing the sprite on a canvas
that has been rotated in the opposite direction. It then restores the original
state of the canvas. Note that no attribute of the ImageSprite is thus
changed. As rotating the sprite does not change the BoundingBox it creates
(xLeft, yTop, Width and Height are not changed), the collision is
detected with the unrotated ImageSprite, which results in vast inaccuracies

and unexpected behaviour, especially in case the sprite is short and wide or

tall and narrow.

There are multiple paths that we may take to solve this problem. If we decide
to keep the colliding algorithm as it is, | propose the following to ensure that
collision detection works properly on rotated image sprites.

1. Override the getBoundingBox () method in ImageSprite.java.
Implementation does not change for Ball.

2. If rotated is true, calculate a new boundingBox for the rotated sprite
using the heading attribute, keeping in mind that the image is rotated. We

can create the axis aligned bounding box using some trigonometry.

The BoundingBox created for a rotated sprite, in most cases, will contain a
lot of space that is not part of the sprite. This can lead to performance issues.
We can optimize this algorithm using monochromatic masks for the sprites,

which can lead to use of a lot less memory and hence better performance.

Another way to solve this problem is to use a different algorithm altogether for
detecting collisions. There exists many algorithms in literature for this, all with

their pros and cons, but | propose the SAT collision detection method for use

in App Inventor. The SAT method detects collisions by projecting the shapes
onto some axes and checking if there is some gap between the projections.
The SAT method is meant to detect collisions in convex shapes. This can be a
good choice for app inventor as it is better than using axis aligned bounding
boxes for rotated image sprites and it allows us to add other sprites like
triangles, squares etc, in the future, to appinventor.

There are some performance implications so the ultimate way to change the
collision detection will be decided later on. We can improve the performance
of collision detection using some methods. One way is to employ different
methods for different sprites. For example, if we want to detect collisions
between two circles, it is easier to just check the distance between their
centers, than using SAT. We can add more such methods to further improve

performance.

For implementation of this algorithm changes are required in the

colliding(Sprite spritel, Sprite sprite2) method.

Which collision detection algorithm to use is a matter of debate, and further

discussion can shed light on some other possibilities.

DELIVERABLES

https://www.sevenson.com.au/programming/sat/

The proposal aims to work on the following:

1. Adding the ability for users to select the origin coordinates of image
sprites using an interactive draggable marker or by changing the values
of the unit coordinates in the properties panel. | aim to complete this by
week 7.

2. Making collision detection work for rotated image sprites by either
improving the current collision detection algorithm or by replacing it
with a different collision detection algorithm. | aim to complete this by
week 9. | am keeping 1 week as a buffer and to explore the glide

problem.

There are some other improvements that can be addressed, but due to the
reduced working hours in this year's GSOC, these are not included in the
proposal.

One particular thing is the addition of a glide block, which moves a sprite to a
particular position in the specified amount of time. |, if time permits, would like
to explore this problem at the end of GSOC and work on it after the GSOC

deadline.

