

ANIMATION IMPROVEMENTS

GSOC 2021 PROPOSAL FOR MIT APP INVENTOR

Proposed By: Himanshu Garg
(@Himanshu2107)

https://github.com/Himanshu2107

ABSTRACT and PROJECT GOALS

The animation portion of the MIT AppInventor, which includes the Canvas,

ImageSprite and Ball components, currently has a lot of room for

improvement. For the purpose of this project I propose to improve these

aspects of MIT AppInventor:

1.​ Setting origin coordinates of an image sprite by the user.

2.​ Improving the algorithm used to detect collisions between sprites.

IMPLEMENTATION

1.​ Setting origin coordinates of an image sprite by the user.

Currently the origin coordinates of an image sprite are set to the top left

corner. In the case of Ball, it is intuitive to have the origin at center, hence

there exists a CenterAtOrigin property that implicitly lets the user decide

whether the origin is at the top left corner or at the center of the ball. But in the

case of ImageSprites, we have no idea about the contents of the image.

Hence, a similar property does not make much sense. It is a desired feature

that lets the user decide where he/she wants the origin to be, i.e. decide which

part of the sprite do the x and y coordinates refer to. To implement this, I

propose to include a draggable marker that would be a part of the

component’s UI in the designer. I would modify a set of properties (like xUser,

yUser) in response to a drag and drop operation in the designer. Apart from

having the marker as a part of the UI, I propose to add properties OriginX

and OriginY in the designer. The OriginX and OriginY refer to

coordinates of the unit scale from the top left corner of the sprite. That is,

(OriginX, OriginY) of (0, 0) would be the top-left corner, (0.5, 0.5)

would be the center and (1, 1) be the bottom-right corner. Internally we

would use u and v for these properties as they are typical in computer

graphics. Whenever the user performs a drag and drop operation on the

marker, the u and v coordinates would be updated. Updating the u, v

coordinates would, in turn, change the position of the marker in the designer.

This is similar to how the latitude and longitude properties are changed

in the Marker component.

The idea behind using unit coordinates is that, this way the position of the

origin with respect to the top left corner remains consistent on scalar

changes, or changes in the image being displayed. In addition, this would

allow the user to select the center, bottom-right corner or bottom-left corner of

the sprite without hassle. To maintain backward compatibility, the default

position of the origin (and hence the marker) would be the top left corner. To

change these things programmatically, a few blocks could also be added.

Technical Details

The following discussion is on the assumption that we are extending this

functionality only to ImageSprites. If the maintainers decide to include Ball,

changes would be similar.

In effect we are adding two new properties to ImageSprites, viz. OriginX

and OriginY. These refer to the coordinates of the unit scale with respect

to the top left corner of the component. The draggable marker is just a way to

edit these properties visually and more interactively. The draggable marker will

be a part of the component’s UI that calls specific methods on specific events.

To associate these properties with the component we need to follow some

general steps which include:

 • Add variables u and v to store the values of unit coordinates.

 • To cache the values of the origin coordinates, add variables OriginX,

OriginY.

 • Add setters and getters for OriginX and OriginY.

 • We will need to convert between the user set origin coordinates and

coordinates of the top left corner. To do this add methods

xLeftToUser() and xUserToLeft() (similarly for y). The use of unit

coordinates would vastly simplify these methods.

Changing the origin coordinates affects many other methods in the

component’s class, as many calculations and changes are done according to

the position of the origin. Some of these methods that may also need

modifications include (non-exhaustive list):

X(), updateX(), Y(), updateY(), moveTo(), PointTowards(),

PointInDirection(), MoveIntoBounds().

Scaling the ImageSprite around different origins has different effects hence

Height() and Width() would also require modifications.

As the marker is part of the component’s UI in the designer, changes are also

required in the MockComponent associated with the component.

First we will need to associate an image with the marker, which will be its

visual representation. Next, we need to make that image draggable and set up

appropriate events and event handlers to that image. In the event handler that

handles the drop of the marker, we will note the coordinates where the marker

is dropped. From these coordinates we can calculate the u and v values for

that point. Next we will call

getProperties().changePropertyValue(String PropertyName,

String value); for u and v to change their values. Thus our draggable

marker is implemented.

After adding the draggable marker functionality a few more changes are

required to the mock component which include:

 • Add variable double u and double v to store the position of origin

wrt top-left corner.

 • Add strings

private static final String PROPERTY_NAME_ORIGINX =

“OriginX”

private static final String PROPERTY_NAME_ORIGINY =

“OriginY”

 • Override resizeImage() to ensure scaling is done while keeping origin

consistent.

 • Add methods private void setOriginYProperty() and

private void setOriginXProperty(). Changes to OriginY and

OriginX lead to changes in the position of the marker within the image

sprite. The code that changes the position of the marker goes here.

 • Update onPropertyChange(), getXOffset(), getYOffset().

Now we have added the functionality to the component’s android as well as

designer representation and functionality. The final step is updating the

version numbers in many classes.

Apart from updating the code, updating the documentation is also important. I

will dedicate some of my time to ensure that documentation is appropriately

updated.

2. Improving the algorithm used to detect collisions between sprites.

The method colliding(Sprite sprite1, Sprite sprite2) is

responsible for checking if two sprites collide. It does so by treating the

sprites as rectangles and checking for overlaps. The method creates

BoundingBox objects for both the sprites and if they intersect destructively,

loops over all the points in the intersected area to check if the sprites collide.

The xLeft, yTop, Width and Height attributes of the sprites are used

to create the bounding boxes. In the current scenario, if the Rotated property

of ImageSprite is set to true, the component would be rotated to point to

the direction of the heading attribute. This is done in the onDraw() method

of ImageSprite. The method does so by drawing the sprite on a canvas

that has been rotated in the opposite direction. It then restores the original

state of the canvas. Note that no attribute of the ImageSprite is thus

changed. As rotating the sprite does not change the BoundingBox it creates

(xLeft, yTop, Width and Height are not changed), the collision is

detected with the unrotated ImageSprite, which results in vast inaccuracies

and unexpected behaviour, especially in case the sprite is short and wide or

tall and narrow.

There are multiple paths that we may take to solve this problem. If we decide

to keep the colliding algorithm as it is, I propose the following to ensure that

collision detection works properly on rotated image sprites.

1. Override the getBoundingBox() method in ImageSprite.java.

Implementation does not change for Ball.

2. If rotated is true, calculate a new boundingBox for the rotated sprite

using the heading attribute, keeping in mind that the image is rotated. We

can create the axis aligned bounding box using some trigonometry.

The BoundingBox created for a rotated sprite, in most cases, will contain a

lot of space that is not part of the sprite. This can lead to performance issues.

We can optimize this algorithm using monochromatic masks for the sprites,

which can lead to use of a lot less memory and hence better performance.

Another way to solve this problem is to use a different algorithm altogether for

detecting collisions. There exists many algorithms in literature for this, all with

their pros and cons, but I propose the SAT collision detection method for use

in App Inventor. The SAT method detects collisions by projecting the shapes

onto some axes and checking if there is some gap between the projections.

The SAT method is meant to detect collisions in convex shapes. This can be a

good choice for app inventor as it is better than using axis aligned bounding

boxes for rotated image sprites and it allows us to add other sprites like

triangles, squares etc, in the future, to appinventor.

There are some performance implications so the ultimate way to change the

collision detection will be decided later on. We can improve the performance

of collision detection using some methods. One way is to employ different

methods for different sprites. For example, if we want to detect collisions

between two circles, it is easier to just check the distance between their

centers, than using SAT. We can add more such methods to further improve

performance.

For implementation of this algorithm changes are required in the

colliding(Sprite sprite1, Sprite sprite2) method.

Which collision detection algorithm to use is a matter of debate, and further

discussion can shed light on some other possibilities.

DELIVERABLES

https://www.sevenson.com.au/programming/sat/

The proposal aims to work on the following:

1.​ Adding the ability for users to select the origin coordinates of image

sprites using an interactive draggable marker or by changing the values

of the unit coordinates in the properties panel. I aim to complete this by

week 7.

2.​ Making collision detection work for rotated image sprites by either

improving the current collision detection algorithm or by replacing it

with a different collision detection algorithm. I aim to complete this by

week 9. I am keeping 1 week as a buffer and to explore the glide

problem.

There are some other improvements that can be addressed, but due to the

reduced working hours in this year’s GSOC, these are not included in the

proposal.

One particular thing is the addition of a glide block, which moves a sprite to a

particular position in the specified amount of time. I, if time permits, would like

to explore this problem at the end of GSOC and work on it after the GSOC

deadline.

