무료 공개 데이터 기반 Al Agent 성능 분석

1. 무료 공개 데이터 수집 현황

1.1 Agent별 무료 데이터 수집량

Agent 유형	전체 목표	무료 데이터	비중	주요 무료 소스
포털 LLM	25,000건	18,000건	72%	대법원, 법제처, 법원 공지
문서 생성	20,000건	12,000건	60%	대법원 판례, 법원 서식
문서 검토	15,000건	8,000건	53%	법원 가이드, 법제처 해석
양식 처리	12,000건	9,000건	75%	전자소송 양식, 법원 서식
법률 추론	18,000건	10,000건	56%	대법원 판례, 헌재 결정
검색 조회	10,000건	8,000건	80%	대법원 검색, 법령정보센터
결제 처리	8,000건	6,000건	75%	법원 수수료 규정, 특허청
총계	108,000건	71,000건	66%	공개 데이터 중심

1.2 무료 데이터 상세 분석

A. 높은 무료 데이터 비중 (70% 이상)

양식 처리 Agent (75%):

- 전자소송 양식: 5,000건 (법원 공개) - 각급 법원 서식: 3,000건 (공개 서식)

- 특허청 양식: 1,000건 (공개 양식)

결제 처리 Agent (75%):

- 법원 수수료 규정: 3,000건 (공개 규정) - 특허청 수수료: 2,000건 (공개 정보) - 전자소송 결제: 1,000건 (공개 절차)

검색 조회 Agent (80%):

- 대법원 검색 패턴: 4,000건 (공개 검색) - 법령정보센터: 3,000건 (공개 API) - 사법정보공개: 1,000건 (공개 정보)

B. 중간 무료 데이터 비중 (50-70%)

포털 LLM (72%):

- 대법원 FAQ: 1,500건 (공개 정보)
- 법제처 생활법령: 2,000건 (공개 DB)
- 법원 공지사항: 2,000건 (공개 공지)
- 법률 뉴스: 4,000건 (공개 기사)

문서 생성 Agent (60%):

- 대법원 판례: 5,000건 (공개 판례)
- 법원 서식: 4,000건 (공개 서식)
- 특허법원 자료: 2,000건 (공개 자료)
- 검찰청 서식: **1**,000건 (공개 서식)

법률 추론 Agent (56%):

- 대법원 판례: 5,000건 (공개 판례)
- 헌재 결정: 2,000건 (공개 결정)
- 법제처 해석: 1,500건 (공개 해석)
- 법학 논문: 1,500건 (공개 논문)

C. 낮은 무료 데이터 비중 (50% 미만)

문서 검토 Agent (53%):

- 법원 가이드: 3,000건 (공개 가이드)
- 법제처 해석: 2,000건 (공개 해석)
- 법원 반려 사례: 2,000건 (제한적 공개)
- 징계 사례: 1,000건 (제한적 공개)

2. 무료 데이터 기반 성능 예상

2.1 Agent별 성능 하락 예상

A. 성능 하락이 적은 Agent (5-15%)

양식 처리 Agent (예상 성능 하락: 10%)

- 무료 데이터 비중: 75%
- 하락 요인:
 - 특수 양식 처리 능력 제한
 - 복잡한 오류 처리 미흡
- 유지되는 기능:
 - 기본 양식 인식: 90% → 85%
 - 데이터 매핑: 88% → 82%
 - 검증 기능: 85% → 80%

결제 처리 Agent (예상 성능 하락: 5%)

- 무료 데이터 비중: 75%
- 하락 요인:
 - 복잡한 수수료 계산 제한
 - 예외 상황 처리 미흡
- 유지되는 기능:
 - 기본 수수료 계산: 95% → 92%
 - 결제 프로세스: 92% → 90%
 - 영수증 발행: 90% → 88%

검색 조회 Agent (예상 성능 하락: 8%)

- 무료 데이터 비중: 80%
- 하락 요인:
 - 고급 검색 기능 제한
 - 검색 결과 정확도 하락
- 유지되는 기능:
 - 기본 검색: 90% → 85%
 - 결과 정리: 85% → 82%
 - 검색 최적화: 80% → 75%

B. 성능 하락이 중간인 Agent (15-25%)

포털 LLM (예상 성능 하락: 20%)

- 무료 데이터 비중: 72%
- 하락 요인:
 - 복잡한 의도 파악 능력 제한
 - 고급 라우팅 결정 미흡
- 유지되는 기능:
 - 기본 의도 분석: 88% → 75%
 - 작업 분해: 85% → 70%
 - Agent 라우팅: 82% → 68%

문서 생성 Agent (예상 성능 하락: 25%)

- 무료 데이터 비중: 60%
- 하락 요인:
 - 복잡한 법률 논리 구성 제한
 - 전문적 서류 품질 하락
- 유지되는 기능:
 - 기본 서류 작성: 85% → 68%
 - 법률 근거 제시: 80% → 62%
 - 논리 구성: 75% → 58%

C. 성능 하락이 큰 Agent (25-35%)

법률 추론 Agent (예상 성능 하락: 30%)

• 무료 데이터 비중: 56%

- 하락 요인:
 - ㅇ 복잡한 판례 분석 제한
 - 고급 법리 적용 미흡
- 유지되는 기능:
 - 기본 판례 분석: 82% → 65%
 - 법리 적용: 78% → 58%
 - 논증 구성: 75% → 55%

문서 검토 Agent (예상 성능 하락: 35%)

- 무료 데이터 비중: 53%
- 하락 요인:
 - 정교한 오류 탐지 제한
 - 전문적 품질 평가 미흡
- 유지되는 기능:
 - 기본 오류 탐지: 80% → 58%
 - 법적 요건 검증: 78% → 55%
 - 개선 권고: 75% → 50%

2.2 전체 시스템 성능 예상

A. 전체 시스템 성능 하락 예상 가중 평균 성능 하락: 약 **22**%

계산 근거:

- 포털 LLM (20% 하락) × 0.25 (중요도) = 5%
- 문서 생성 (25% 하락) × 0.20 (중요도) = 5%
- 문서 검토 (35% 하락) × 0.15 (중요도) = 5.25%
- 양식 처리 (10% 하락) × 0.15 (중요도) = 1.5%
- 법률 추론 (30% 하락) × 0.15 (중요도) = 4.5%
- 검색 조회 (8% 하락) × 0.05 (중요도) = 0.4%
- 결제 처리 (5% 하락) × 0.05 (중요도) = 0.25%

총 성능 하락: 21.9% ≈ 22%

B. 시스템별 성능 수준

기본 기능 (80-85% 수준):

- 단순 서류 작성
- 기본 양식 처리
- 표준 비용 계산
- 일반 검색 기능

중급 기능 (65-75% 수준):

- 복잡한 서류 작성
- 의도 파악 및 라우팅
- 기본 법률 검토

고급 기능 (50-65% 수준):

- 정교한 법률 추론
- 전문적 문서 검토
- 복잡한 오류 분석

3. 무료 데이터 기반 성능 테스트 가능성

3.1 테스트 가능한 기능 영역

- A. 완전 테스트 가능 (90% 이상)
- 1. 양식 처리 기능:
 - 기본 양식 인식 및 처리
 - 데이터 입력 및 검증
 - 표준 양식 생성
- 2. 결제 처리 기능:
 - 기본 수수료 계산
 - 결제 프로세스 처리
 - 영수증 발행
- 3. 검색 기능:
 - 기본 판례 검색
 - 법령 조회
 - 검색 결과 정리

B. 부분 테스트 가능 (70-90%)

- 1. 기본 문서 생성:
 - 단순한 소장 작성
 - 기본 답변서 생성
 - 표준 신청서 작성
- 2. 포털 기능:
 - 기본 의도 파악
 - 단순 작업 분해
 - 기본 라우팅
- 3. 기본 검토 기능:
 - 형식적 요건 검사
 - 필수 항목 확인
 - 기본 오류 탐지
- C. 제한적 테스트 가능 (50-70%)
- 1. 고급 문서 생성:
 - 복잡한 법률 논리 구성

- 전문적 서류 품질
- 개인화된 서류 작성

2. 법률 추론:

- 복잡한 판례 분석
- 고급 법리 적용
- 정교한 논증 구성

3. 전문 검토:

- 정교한 오류 분석
- 전문적 품질 평가
- 개선 권고 생성

3.2 핵심 기능 테스트 시나리오

A. 전체 워크플로우 테스트

시나리오: 간단한 민사소송 소장 작성

- 1. 사용자 입력 처리 (포털 LLM)
 - 예상 성능: 75%
 - 테스트 가능: 기본 의도 파악
- 2. 소장 생성 (문서 생성 Agent)
 - 예상 성능: 68%
 - 테스트 가능: 기본 서류 구조
- 3. 서류 검토 (문서 검토 Agent)
 - 예상 성능: 58%
 - 테스트 가능: 형식적 요건 검사
- 4. 양식 처리 (양식 처리 Agent)
 - 예상 성능: 85%
 - 테스트 가능: 양식 자동 입력
- 5. 비용 계산 (결제 처리 Agent)
 - 예상 성능: 92%
 - 테스트 가능: 기본 수수료 계산

전체 워크플로우 예상 성능: 약 72%

- B. 개별 기능 테스트
- 1. 단순 서류 작성 테스트:
 - 성공률: 80-85%
 - 한계: 복잡한 법률 논리 부족
- 2. 기본 양식 처리 테스트:

- 성공률: 85-90%
- 한계: 특수 양식 처리 제한
- 3. 표준 비용 계산 테스트:
 - 성공률: 90-95%
 - 한계: 복잡한 수수료 계산 제한
- 4. 기본 검색 테스트:
 - 성공률: 85-90%
 - 한계: 고급 검색 기능 부족
- 3.3 테스트 결과 해석 가이드

A. 성공 기준

MVP 수준 (최소 기능):

- 전체 워크플로우 완료: 70% 이상
- 핵심 기능 동작: 80% 이상
- 기본 사용자 경험: 양호

상용화 가능 수준:

- 전체 워크플로우 완료: 85% 이상
- 핵심 기능 동작: 90% 이상
- 사용자 만족도: 높음

B. 한계 인식

무료 데이터 기반 시스템의 한계:

- 1. 복잡한 법률 추론 능력 부족
- 2. 전문적 서류 품질 제한
- 3. 정교한 오류 분석 미흡
- 4. 개인화된 서비스 제한

보완 필요 영역:

- 1. 전문가 검증 데이터 추가
- 2. 실무 사례 데이터 확보
- 3. 크라우드소싱 데이터 활용
- 4. 지속적 성능 개선

4. 결론 및 권장사항

- 4.1 무료 데이터 기반 개발 가능성
- A. 긍정적 측면
- 1. MVP 개발 가능:
 - 기본 기능 구현 가능 (70-80% 수준)

- 전체 워크플로우 테스트 가능
- 시스템 아키텍처 검증 가능
- 2. 상당한 비용 절감:
 - 개발 비용: 1.2억원 → 8천만원 (33% 절감)
 - 데이터 수집 비용: 0원
 - 초기 투자 위험 최소화
- 3. 빠른 프로토타입 개발:
 - 개발 기간: 8주 → 6주
 - 검증 기간 단축
 - 시장 반응 빠른 확인
- B. 한계 및 위험
- 1. 성능 한계:
 - 전체 시스템 성능 22% 하락
 - 고급 기능 제한 (50-65% 수준)
 - 전문성 부족
- 2. 상용화 제약:
 - 법률 전문가 만족도 낮음
 - 복잡한 사건 처리 어려움
 - 경쟁력 부족
- 3. 확장성 문제:
 - 성능 개선 한계
 - 데이터 품질 한계
 - 사용자 신뢰도 문제

4.2 최종 권장사항

- A. 단계적 개발 전략
- 1단계: 무료 데이터 MVP (6주)
- 기본 기능 구현 및 검증
- 시스템 아키텍처 완성
- 초기 성능 테스트
- 2단계: 유료 데이터 보강 (4주)
- 전문가 검증 데이터 추가
- 성능 개선 (22% → 5% 하락)
- 품질 검증 강화
- 3단계: 상용화 (2주)
- 최종 성능 테스트
- 사용자 피드백 반영
- 서비스 런칭

B. 리스크 관리

- 1. 성능 모니터링:
 - 지속적 성능 측정
 - 사용자 피드백 수집
 - 개선 사항 도출
- 2. 데이터 품질 관리:
 - 무료 데이터 검증 강화
 - 중복 데이터 제거
 - 품질 기준 설정
- 3. 사용자 기대 관리:
 - 시스템 한계 명확히 전달
 - 점진적 개선 계획 공유
 - 피드백 수렴 체계 구축

결론: 무료 공개 데이터만으로도 전자소송 AI Agent의 MVP 개발과 전반적 성능 테스트는 충분히 가능하며, 약 22%의 성능 하락을 감안하더라도 시스템 검증과 초기 사용자 반응확인에는 적합합니다.