AISC 11 Write-Up

Agentic Al Risks Induced by
System-Level Misalignment

Summary

We propose a project that probes Al risks induced by System-Level Misalignment in agentic
LLM systems i.e., exploiting the agent's model and its interactions with scaffolding/operational
environment. Our goal is to study how misalignment and weak security controls reinforce each
other, creating bidirectional failures where misaligned agents introduce new attack vectors and
agentic system design introduce new attack surfaces. The project progresses along different
streams/ideas. Together, these efforts aim to formalize threat models, validate them
experimentally, and deliver practical mitigations. This work addresses an under-studied risk
vector that complements user- and model-level alignment research and potentially lays out a
subfield.

Non-Summary

Motivation

Most alignment work focuses on user-level (bad prompts, jailbreaks) and model-level (objective
specification, reward-shaping) failures. However, agentic systems don’t operate in silos, they
are not just models. They are still software that operate as services with software tools, memory
(known as agent scaffolding), network, container, and system privileges and user interaction.
This enables system-level failure modes (insider-like actions, privilege escalation, exfiltration
to attacker owned assets) that are not mitigated by standard RL/robustness research. Our
previous work in Al Safety Camp classifies these types of misalignments. The system-level
failure modes and addressing Al risks have pronounced risk implications relevant to the
cybersecurity domain.

Table 1. A Classification of Misalignment Types in Agentic Al Systems.

Misalignment

Description Example in This Paper
Type
User Misalianment Occurs when the user intentionally or unintentionally requests a harmful or disallowed A user deliberately attempts to “jailbreak” the system or requests
9 action. instructions for an illicit activity.
Model Arises when the Al model itself errs and disregards a critical safety or preference The Al recommends a food item containing a severe allergen to an allergic
Misalignment constraint provided by the user. user.
System Refers to flaws in the broader operational environment that permit unsafe behavior, such An agent inadvertently disclosing sensitive financial information to a

Misalignment as with third-party tools. malicious website or tool.

https://arxiv.org/abs/2506.13774
https://arxiv.org/abs/2506.13774

We aim to meet the moment by grounding Al safety research in messy, real-world
deployments where agentic systems already operate and fail. While the broader community
continues important work on eliciting model capabilities and red-teaming for failure modes, we
are motivated by the lack of attention to the software engineering layer and the scarcity of
actionable blue-team tools that help defenders secure agentic systems in practice.

Project Plan

Our main research questions (RQ) aim to study Al risks through the following lens:
1. How lack of capable security controls create new attack surfaces in agentic systems
2. How misalignment with the deployer’s intent creates security attack vectors and
capabilities
3. Identifying defense mechanisms

Stream 1: Research attack and defense mechanisms for system misalignment threat
models that are proven and where risk has materialized

Metric Finding

Organizations adopting LLMs 98%
LLMs in customer-facing apps 75%
MCPs in customer-facing apps 47%
LLM security fully deployed 54%
MCP security currently onboarding 24%
API security currently onboarding 26%
Security cited as top adoption barrier 49%
Organizations refusing Al adoption 2%

This industry survey shows deploy first, secure later behavior. Security controls for Al systems
are lagging Al deployments, indicating that the new attack surfaces are ripe for exploitation. A
recent Comet prompt injection incident showed how malicious web content could trick an agent
into exfiltrating user credentials—illustrating how system components introduce new attack
surfaces and cause immediate security risks. At the same time, most defensive security
measures still revolve around making models more robust and/or agent monitoring/observability
tools rather than research on reducing security risks at the agentic system level.

Stream 1 focuses on identifying and testing new classes of attacks unique to emerging agentic
Al systems, along with evaluating defenses against them using real-world tools like Comet,
Atlas, or their successors. Our goal is to develop and integrate defense mechanisms into

https://www.pynt.io/blog/llm-security-blogs/genai-application-security-report-overview
https://brave.com/blog/comet-prompt-injection/
https://www.patronus.ai/percival
https://www.patronus.ai/percival

popular frameworks (e.g., LangGraph, CrewAl) to make agentic misalignment defenses both
accessible and reliable.

RQ:

1.

Are there new classes of attacks in emerging agentic systems architecture that add to
the existing taxonomy in this survey paper?

How prevalent are established threat models in existing and emerging agentic
architectures across different vendor’'s agentic offerings? The focus will be on
agent2environment, agent2memory and action risks.

“Attacker Moves Second” says that none of the current state-of-the-art defense
mechanisms work against an adaptive attacker, particularly humans. How do
existing/newly proposed defense mechanisms hold up against attacks on external
interfaces in emerging agentic scaffolding and architectures?

What is preventing the wide-scale adoption of these defense mechanisms? Is it possible
to democratize defense mechanisms by incorporating them in popular agentic
frameworks? What are the challenges in this?

Deliverable: A library/patch that implements techniques like CaMeL to democratize defense
mechanisms in popular frameworks like Langgraph, CrewAl or propose new defense
mechanisms

Stream 2: Research defense mechanisms for near-term imminent system misalignment

threat models where risk is imminent but not materialized vyet.
Model Performance Comparison on Vulnerability Reproduction
0.70 0.667
[0 Claude Sonnet 3.7
0.613
060 W Claude Sonnet 4 0.595
B Claude Opus 4.1
@ B Claude Sonnet 4.5
8 050 B OpenHands + Claude Sonnet 4 (Public Leaderboard) _ 0472
5
0 0.40
B
2
£ oa 0.289
= 0.250
e
2 o020 0.178
a 0.145
0.10
0.00

1 Trial 30 Trials

OpenAl’s latest system card reports model cyber-capability results without browsing or tool
access, likely understating real-world risk, since deployed agents routinely operate with
browsing, shell, or API privileges. In contrast, Anthropic’s latest system card, which tests agents
with tools in realistic environments, demonstrates that models already achieve 30 % success in
a single trial and 60 % after 30 trials on capture-the-flag—style exploitation tasks. At the same
time, empirical data confirm that LLM-generated code remains insecure at scale where 62 % of

https://arxiv.org/pdf/2406.02630
https://arxiv.org/pdf/2510.09023
https://arxiv.org/abs/2503.18813
https://assets.anthropic.com/m/12f214efcc2f457a/original/Claude-Sonnet-4-5-System-Card.pdf
https://arxiv.org/pdf/2404.18353

code produced by state-of-the-art models contained at least one security vulnerability. This
indicates short-term asymmetry where the ability to exploit code vulnerabilities is increasing, but
the ability to write secure code is lagging.

Redwood Research’s blog warns that a misaligned model (regardless of internal or externally
induced misalignment) may cause subtle regressions in security posture cascading through
production systems that traditional alignment research does not yet address. If infrastructure is
compromised, it is difficult to guarantee the security of layers built on top of infra

In Stream 2, the focus is Al Control, to build systems that remain secure despite the agent itself
being untrustworthy. Treat all code (Al or human-authored) as untrusted until proven
secure, build mechanisms that continuously detect and block posture regressions at commit
time.

RQ:
1. Which static and dynamic signals reliably indicate a commit changes security posture
from restrictive — permissive
2. Can semantic/taint-flow diffs detect regressions where sanitized inputs become
unsanitized or sensitive sinks are newly reachable
3. How can we quantify and compare threat-model states before and after a commit to
measure whether a code change increases or decreases overall system risk?

Deliverable: Drawing inspiration from OpenAl’s Aardvark, we will prototype a code delta control
component to identify the changes in security posture as an Al control mechanism

Team Composition

Team size: 4-8 (excluding leads)

Required average weekly commitment 10 - 15 hours

Team Member Roles Needed: Al Safety Camp is a great way to get familiar with the tools and
technology and get some research experience in a new field in a supportive environment. Even
if you don’t have the following skills, the willingness to commit to learning and actively
contributing to the project is more valuable! We do expect everyone to be able to code hands-on
in any one language

Expertise & Key Tools / Skills This is you if...
Responsibilities

https://blog.redwoodresearch.org/p/how-much-novel-security-critical
https://arxiv.org/abs/2312.06942
https://openai.com/index/introducing-aardvark/

Software
Developer/Al
Engineer

Al Alignment

Researcher
Focus)

Data Scientist

(RL

Builds and maintains the
experimental infrastructure,
integrates model APIs,
manages version control,
and ensures the codebase
is functional and
operational per developer
guidelines.

Designs experiments to
study alignment failures,
develops reward modeling
and has experience in
building verifier agents with
variable rewards

Analyzes model outputs,
quantifies behavioral drift,
builds dashboards for
evaluation metrics, and
curates datasets for
reproducible experiments.
Provides statistical
evidence for failure patterns
and mitigation
effectiveness.

Python, FastAPI/Flask,
Git, Docker,
Kubernetes, CI/CD,
REST APIs, LangChain,
CrewAl, LangGraph,
OpenRouter AP,
LangSmith, MCP
Registries

PyTorch, JAX,
HuggingFace,
Gymnasium, Weights &
Biases, reward

modeling frameworks.

Python, Pandas,
NumPy, SQL, Jupyter,
Seaborn/Matplotlib,
MLflow, Streamlit,
scikit-learn.

You have hands-on
experience slinging code
(language-agnostic) and
enjoy bringing
experimental ideas to life.
You’re open to learning

new tools and
frameworks, balance
“vibe coding” creativity
with responsibility for

production-ready
systems, and take pride

in clean, maintainable
code.

You have a solid
grounding in

reinforcement learning,
are curious about how
optimization pressure
produces misalignment,
and want to design
experiments linking
behavior to security
outcomes.

You love finding patterns
in messy data, building

metrics that make
misalignment
measurable, and
visualizing risk or
security-posture
trade-offs in intuitive

ways.

Security Engineer Designs and validates OWASP ZAP, Burp You've worked with or

Team
Leads

Evan
Harris

Preeti
Ravindra

threat models, secures Suite,
experimental pipelines, tools.
identifies vulnerabilities in
agentic workflows, and
hardens environments
against subversion or
misuse. Advises on Secure

Software Development
Lifecycle (SSDLC)
practices.

Background

Began white-hat hacking in 2025 with a
focus on MCP servers, leading to
multiple vulnerability disclosures.
Professional software developer since
2018, initially studying genomics and
unconscious processing before
transitioning into programming through
self-study and a 2017 bootcamp.
Passionate about using agentic systems
for responsible vulnerability detection
and disclosure.

Connect: Follow on Twitter

9 years of experience at the intersection
of Al and cybersecurity, specializing in
applied research that transforms
emerging ideas into production-grade
security solutions. Has worked on
securing Al data centers and addressing
real-world risks similar to those explored

laC scanning have exposure to SSDLC
and production security.
You think adversarially,
are curious about how Al
systems fail under
pressure, and want to
explore the intersection
of Al security and Al
safety

Skills and Role in the Project

Full-stack developer and security
researcher with strong hands-on coding
experience. Will lead agentic defense
prototyping and automation, focusing
on agents that detect and report
vulnerabilities responsibly, file
coordinated disclosures, and share
defensive software patterns. Committed
to contributing 12+ hours weekly
(approx. 2 hrs/day, Mon-Sat) and
participating in hackathons.

Applied machine learning engineer in
security. Will direct research direction
ensuring the project bridges Al Safety
and Al Security. Oversees coordination
across technical streams and
dissemination of findings to the broader

https://x.com/Evan__Harris/

in this project. Holds multiple research community. Committed to
publications and patents in Al Security. contributing 10+ hours weekly

Connect via Website

Team Culture

What our groupmates will bring to the table:
1. Have an active voice in the research direction
2. Scoping and hands-on implementing experiments with high level direction from leads.
3. They will make good tradeoffs on software choices and be creative in utilizing datasets

What our groupmates will get from us
- Mentoring in Al+security/adversarial mindset
- Guidance, Project Management and Conflict Resolution
- Hands-On debugging to some extent

Groupmates will thrive if they enjoy this kind of work environment:
- Ready to be hands-on in coding
- Not afraid to ask questions.
- Willing to share perspectives and making good technical arguments
- Willing to be challenged and explore away from your comfort zone
- High agency and ownership

What this project is not:
- Atheoretical project
- Something to coast through while being non-committal on deliverables

By the end of the project, our hope for you is that you walk away with a significant
understanding of risks of Al systems and the practical experience of bringing an Al agent for
defensive measures online.

Theory of Change

Goals (success criteria)

e Deliver a toolkit to the community to democratize evaluating agentic stacks and mitigate
system-level risks.

e Develop and validate Al-control mechanisms that detect and block security-posture
regressions in automated code generation and infrastructure updates

https://preetiravindra.info

e Producing empirical research for the exchange of techniques between Al Safety and Al
Security to reduce Al risks.

Non-goals

e We will not study multi-agent security or coordination.

We will not attempt live attacks on third-party production systems.

e We will not release any exploit scripts that enable real-world compromise without
mitigations; red-team artifacts will be carefully sanitized and reviewed by an ethics
board.

e We will not attempt to “solve” model-level alignment generally; our focus is on system
interactions, operational controls, and applied defenses

This project aims to generate actionable evidence and build deployable defenses for both
present and near-future system misalignment risks. In the short term, we empower practitioners
to evaluate, patch, and harden existing agentic frameworks through accessible blue-team
tooling.In the longer term, we lay the foundation for secure autonomy—developing methods to
quantify and prevent posture drift when Al systems themselves author or deploy code.

As a secondary goal, we hope this experiment can provide evidence that is legible and
persuasive to researchers across both Al safety and applied security communities. In a spirit of
(adversarial) collaboration, we aim to engage alignment researchers, ML practitioners, and
systems security engineers in critiquing our threat models and registering predictions about
experimental outcomes.

Timeline

The team is split up into groups of researchers and each group tackles one of the streams. This
is the “happy path” in execution

Month One: Setup and Design

e Team building, Onboarding, Refine the overall project scope, Rapid experimentation for
selecting top 2 experiment designs

Month Two: Execution and Mitigation

e Red Team Phase to execute attack scenarios, Blue Team phase to design/implement
proposed mitigations

Month Three: Evaluation, Synthesis and Dissemination

e Synthesize findings from experiments, documentation for tools, feedback from users,
AISC presentation prep.

Failure Modes

e Failure to Reproduce the Threat: The chosen agentic system may be too
unsophisticated (fails to follow instructions) or unexpectedly robust (immune to our
injection). We could spend weeks setting up an experiment only to find the core premise
doesn't work, yielding no useful data on mitigations.

e Countermeasure:

o Diversify and Timebox. In Month One, each pair will prototype their attack
against at least two different open-source agentic frameworks. We will timebox
this initial "vulnerability discovery" phase to two weeks and proceed with the most
promising target.

o Eval awareness: Systems driven by more powerful models will demonstrate
awareness that they are being tested. This could lead to intentional sandbagging
when monitoring is being performed.

o Use Smaller Models for Proof of Concept. Assuming there is not a reliable
counter measure within state of the art models to significantly decrease eval
awareness, then smaller models can be used for initial experiments.

e Lack of publicly available datasets for empirical research: Lack of diverse,
high-quality datasets skews results toward narrow environments or benign behaviors,
underrepresenting real-world failure diversity.

e Countermeasure:

o Establish collaborative data contribution pipelines with GitHub/open source
communities—to continuously expand the dataset’s coverage of agentic
behaviors and threat models while enforcing strict ethical review and
anonymization

o Use synthetic datasets

e Ineffective or Impractical Mitigations: The mitigations we design might successfully
block the attack but render the agent useless (e.g., a network filter that blocks legitimate
API calls) or have too many false positives, making them impractical for real-world use.

e Countermeasure:

o Define Mitigation Metrics Upfront. For each experiment, we will pre-define not
only security success (attack blocked) but also a "usability score" or
"performance overhead" metric. This ensures we evaluate the mitigation's
practicality, not just its power.

e Flawed Experimental Environment: A misconfiguration in our sandbox could lead to
two critical failures: 1) The environment is "flaky," producing inconsistent results that
make our measurements meaningless. 2) A critical vulnerability allows an experimental
payload to "escape" the sandbox, posing an operational security risk.

e Countermeasure:

o Infrastructure-as-Code and Peer Review. All experimental environments must
be defined using laC tools (like Docker Compose).

e Team Desynchronization: With groups working in parallel, there's a risk of
environments drifting apart, inconsistent data collection methods, or duplicated effort in

building common tooling. This could invalidate our ability to synthesize a single, coherent
taxonomy.
Countermeasure:

o Mandatory Weekly Syncs and Centralized Docs. We will hold a mandatory
weekly sync where each pair presents their progress, challenges, and any
changes to their environment. All experimental configurations will be managed
via version-controlled scripts (e.g., Dockerfiles) in the central GitHub repository.

Team Member Withdrawal: Person 1 of pair A drops out. This could happen for more
than one of the pairs. It could happen at any point throughout the course of the project.
Countermeasure:

o Flexible Team Composition. Person 2 of pair A in the above scenario could
write up the current position of their experiment, then merge into pair B or C. Two
other variations of this are:

o One or two people from pairs B or C offer partial support to Person 2 in their
research path.

o If Person 2 actually prefers to finish their experiment without bringing in explicit
support from another pair (which would be quite sensible if their teammate was to
withdraw near the close of their experiment),then this is an additional path.

o If many people withdraw, then the project scope would be reduced to fit the
remaining available time within AISC.

Team leader withdrawal: Either Preeti or Evan has to withdraw for whatever reason.
Countermeasure: Reduce overall scope of project. Perform handoff of any relevant
details before complete withdrawal of either team leader.

Scope: The initial exploration phase could unveil that the experimental design is
unachievable within the period of AISC.

Countermeasure:

o Scoping Down Primary Deliverables. If completing one experiment and
producing a tool as an output for the community seemed like overreaching, then
a blog post rather than an open source tool would be made as the end target.

Output

1.

2.

The primary goal is creating a code repository of attack and defense mechanisms which
can also be a submission to the Call for Tools, Demo Labs, workshops at leading
security conferences like BlackHat Arsenal/ DEFCON (GitHub repo)

The secondary goal is a paper submission/talk at an Al security conference like |IEEE
S&P, AAAI AICS, ACSAC, CIKM or equivalent.

https://www.blackhat.com/html/arsenal.html
https://defcon.org/html/defcon-33/dc-33-index.html
https://sp2026.ieee-security.org/
https://sp2026.ieee-security.org/
http://aics.site/AICS2026/cfp.html
https://www.acsac.org/2025/committees/program/
http://www.cikmconference.org/

Risks and downsides (externalities)

1.

Dual-use publication risk (revealing attack recipes): publishing precise exploit
methods (even sandboxed) can enable malicious actors. Mitigation: follow responsible
disclosure, withhold or heavily sanitize exploit payloads, coordinate with vendors when
applicable, and release mitigations concurrently.

Overconfidence / misapplied hardening: if mitigations are framed as “silver bullets,”
product teams might reduce other security hygiene (false sense of safety). Mitigation:
emphasize layered defense and operational playbooks; publish limitations and
non-goals.

Misinterpretation by policymakers or media: framing could be sensationalized,
accelerating poorly informed regulation or bans. Mitigation: clear messaging, public FAQ,
and collaboration with civil-society and product security teams to contextualize findings.

Acknowledgements

Shout out to Nell Watson for bringing Preeti and Evan together in the 2025 Al Safety Camp, and
for demonstrating how to deliver within the container of AISC.

	AISC 11 Write-Up
	Agentic AI Risks Induced by System-Level Misalignment
	Summary
	Non-Summary
	Motivation
	Project Plan
	Team Composition
	Team Culture

	Theory of Change
	Timeline
	Failure Modes

	Output
	Risks and downsides (externalities)
	Acknowledgements

