PHYSICS MODULE HANDBOOK - 2023

.........

	A TOWNER DOOR APPROVE
Module Name	Mathematical Physics III
Modul Level	Undergraduate
Code	18H02190603
Courses (if applicable)	Elective Courses
Semester	5 th
Person responsible for	Azwar Sutiono, S.Si., M.Si.
the module	
Lecturer	Prof. Tasrief Surungan, Ph.D.
	Azwar Sutiono, S.Si., M.Si.
Language	Indonesian Language and English
Relation to Curriculum	Undergraduate degree program, elective, 5 th semester
Type of Teaching,	Teaching methods : [collaborative learning], [project-based learning],
Contact Hours	[problem-based learning].
	Teaching forms: [lecture], [tutorial]
	Schedule: Tuesday, 9.10-11.40 WITA
Workload	For this course, students are required to meet a minimum of 136.00
	hours in one semester, which consist of:
	- 40.00 hours for lecture,
	- 48.00 hours for structured assignments,
	- 48.00 hours for private study
Credit Points	3 Credit Points (equivalent with 5.1 ECTS)
Requirements According	A student must have attended at least 80% of the lectures to sit on the
to the Examination	final examination.
Regulations	
Mandatory Prerequisites	Mathematical Physics I & II
Module	After completing the course, Students are able:
objectives/intended	Intended Learning Outcomes (ILO):
learning outcomes	ILO 2: Students are able to use the fundamental principles of physics
	in modeling and computation to solve the complex physical problem.
	ILO 6: Students are able to use the mathematical method to solve the
	physical related- problem.
	Course Learning Objective (CLO):
	After completing this course, students are expected to be able to
	master material about matrix basics and linear algebra, vector spaces
	and linear transformations, inner product spaces and orthogonality,
	boundary value problem, finite difference method, and finite element
	method.
	Sub CLO

PHYSICS MODULE HANDBOOK - 2023

	Vasca on matrix.
	ILO-6 \Rightarrow CO-2 (two weeks): Students have solutions on general
	vector space problems.
	ILO- $6 \Rightarrow$ CO-3 (two weeks): Students have a solution on Euclidean
	vector space.
	ILO-2 \Rightarrow CO-4 (four weeks): Students solve a differential equation
	problem using a finite difference method.
	ILO-2 \Rightarrow CO-5 (four weeks): Students solve a differential equation
	problem using finite element method specially approximation method and weighted residual method.
Content	Students will learn about:
	1. Matrix Basics and Linear Algebra.
	2. Vector Spaces and Linear Transformations.
	3. Inner Product Spaces and Orthogonality.
	4. Introduction to the Boundary Value Problem.5. Finite Difference Method.
	6. Finite Element Method.
Forms of Assessment	Assessment techniques: [participation], [written test],
	Assessment forms: [mid-term exam], [final term exam], [assignment],
	The number of Assessment and Evaluation: Assignment 1; Evaluation (Mid-Term and Final term); Project.
	Assignment = 5%, Mid-term exam = 25%, Project =40%, Final-term exam = 30%.
	CO 1 => ILO 6: 5% (Assignment 1)
	CO 2 => ILO 6: 10% (Mid examination number 1)
	CO 3 => ILO 6: 15% (Mid examination number 2)
	CO 4 => ILO 2: 20% (Project 1)
	CO 4 => ILO 2: 15% (Final examination number 1)
	CO 5 => ILO 2: 20% (Project 2)
C4dev and c=====+	CO 5 => ILO 1: 15% (Final examination number 2)
Study and examination requirements and	• Assignment 1
forms of	Mid examination
examination	• Project 1, 2
	• Final examination
Media Employed	LED, Whiteboard, Learning Management System (SIKOLA).

PHYSICS MODULE HANDBOOK - 2023

- 2. Randall J. Le Veque, 2007, Finite Difference Methods for Ordinary and Partial Differential Equations, Society for Industrial and Applied Mathematics.
- <u>3.</u> D. V. Hutton, 2004, Fundamentals of Finite Element Analysis, McGraw-Hill Company.