
The Tiny Language

Note: (Task (1) deliverable: you will deliver a document containing the RE rules of Tiny

Language + DFA + Scanner)

A program in TINY consists of a set of functions (any number of functions

and ends with a main function), each function is a sequence of statements

including (declaration, assignment, write, read, if, repeat, function,

comment, …) each statement consists of (number, string, identifier,

expression, condition, …).

Language described as:

1)​ Number: any sequence of digits and maybe floats (e.g. 123
| 554 | 205 | 0.23 | …)

2)​ String: starts with double quotes followed by any
combination of characters and digits then ends with double
quotes (e.g. “Hello” | “2nd + 3rd” | …)

3)​ Reserved_Keywords: int | float | string | read | write | repeat |
until | if | elseif | else | then | return | endl

4)​ Comment_Statement: starts with /* followed by any
combination of characters and digits then ends with */ (e.g.
/*this is a comment*/ | …)

5)​ Identifiers: starts with letter then any combination of letters
and digits. (e.g. x | val | counter1 | str1 | s2 | …)

6)​ Function_Call: starts with Identifier then left bracket “(“
followed by zero or more Identifier separated by “,” and
ends with right bracket “)”. (e.g. sum(a,b) | factorial(c) |
rand() | …)

7)​ Term: maybe Number or Identifier or function call. (e.g. 441
| var1 | sum(a,b) | …)

8)​ Arithmatic_Operator: any arithmetic operation (+ | - | * | /)

9)​ Equation: starts with Term or left bracket “(“ followed by
one or more Arithmatic_Operator and Term. with right
bracket “)” for each left bracket (e.g. 3+5 | x +1 | (2+3)*10 |
…)

10)​ Expression: may be a String, Term or Equation (e.g. “hi” |
counter | 404 | 2+3 | …)

11)​ Assignment_Statement: starts with Identifier then
assignment operator “:=” followed by Expression (e.g. x :=
1 | y:= 2+3 | z := 2+3*2+(2-3)/1 | …)

12)​ Datatype: set of reserved keywords (int, float, string)
13)​ Declaration_Statement: starts with Datatype then one or

more identifiers (assignment statement might exist)
separated by coma and ends with semi-colon. (e.g. int x; |
float x1,x2:=1,xy:=3; | …)

14)​ Write_Statement: starts with reserved keyword “write”
followed by an Expression or endl and ends with
semi-colon (e.g. write x; | write 5; | write 3+5; | write “Hello
World”; | …)

15)​ Read_Statement: starts with reserved keyword “read”
followed by an Identifier and ends with semi-colon (e.g.
read x; | …)

16)​ Return_Statement: starts with reserved keyword “return”
followed by Expression then ends with semi-colon (e.g.
return a+b; | return 5; | return “Hi”; | …)

17)​ Condition_Operator: (less than “<” | greater than “>” | is
equal “=” | not equal “<>”)

18)​ Condition: starts with Identifier then Condition_Operator
then Term (e.g. z1 <> 10)

19)​ Boolean_Operator: AND operator “&&” and OR operator “||”
20)​ Condition_Statement: starts with Condition followed by

zero or more Boolean_Operator and Condition (e.g. x < 5
&& x > 1)

21)​ If_Statement: starts with reserved keyword “if” followed by
Condition_Statement then reserved keyword “then”
followed by set of Statements (i.e. any type of statement:
write, read, assignment, declaration, …) then
Else_If_Statment or Else_Statment or reserved keyword
“end”

22)​ Else_If_Statement: same as if statement but starts with
reserved keyword “elseif”

23)​ Else_Statement: starts with reserved keyword “else”
followed by a set of Statements then ends with reserved
keyword “end”

24)​ Repeat_Statement: starts with reserved keyword “repeat”
followed by a set of Statements then reserved keyword
“until” followed by Condition_Statement

25)​ FunctionName: same as Identifier
26)​ Parameter: starts with Datatype followed by Identifier ​

(e.g. int x)
27)​ Function_Declaration: starts with Datatype followed by

FunctionName followed by “(“ then zero or more Parameter
separated by “,” then “)” (e.g. int sum(int a, int b) | …)

28)​ Function_Body: starts with curly bracket “{” then a set of
Statements followed by Return_Statement and ends with
“}”

29)​ Function_Statement: starts with Function_Declaration
followed by Function_Body

30)​ Main_Function: starts with Datatype followed by reserved
keyword “main” then “()” followed by Function_Body

31)​ Program: has zero or more Function_Statement followed by
Main_Function

Code Sample

/*Sample program includes all 30 rules*/

int sum(int a, int b)​
{

​ return a + b;

}
int main()
{

int val, counter;
read val;
counter:=0;
repeat

val := val - 1;
write "Iteration number [";
write counter;
write "] the value of x = ";
write val;
write endl;
counter := counter+1;

until val = 1
write endl;
string s := "number of Iterations = ";
write s;
counter:=counter-1;
write counter;
/* complicated equation */
float z1 := 3*2*(2+1)/2-5.3;
z1 := z1 + sum(1,y);​
if z1 > 5 || z1 < counter && z1 = 1 then

write z1;
elseif z1 < 5 then
​ z1 := 5;
else

 z1 := counter;
end
return 0;

}

Code Sample

/* Sample program in Tiny language –

computes factorial*/

int main()
{

int x;

read x; /*input an integer*/

if x > 0 then /*don’t compute if x <= 0 */

int fact := 1;

repeat

fact := fact * x;

x := x – 1;

until x = 0

write fact; /*output factorial of x*/

end

return 0;

}

	The Tiny Language

