Magnet Milestone 3 Proposal: An Appchain Tech
Stack leverages the Coretime Model to enhance

DOT use cases and facilitate Polkadot's growth

Proponent: 15mAbCUcBa7jT8Rak8j7hC5w9jUM8b7LFUuhp9nENgmtehLn

Date: 7.4.2024

Requested DOT: 33,956.17 DOT | USD $294,400 (The amount of DOT is converted
based on the EMA-7 price(Subscan) on the day of the official submission, 2024-4-7, at
the rate of $8.67 per DOT.)

Short description: Leveraging the Coretime Model, Magnet Stack is an Appchain
Stack Solution Tailored to Amplify the use cases of DOT and facilitate Polkadot

Ecosystem Growth.

1. Context

As the blockchain industry continues to evolve, the trend towards diversified forms of
DApps becomes increasingly apparent. In addition to the currently prevalent smart
contract DApps, more and more applications are opting for the form of Appchains to
support their business scenarios. Furthermore, Rollup technology is gradually becoming

mainstream for scaling blockchain performance.

At the recent Sub0 conference, Dr. Gavin proposed a new network concept called the
JAM chain. JAM chain is not a smart contract chain, but its emergence will enable
Polkadot to have the capability to handle Rollup compatibility. With the advent of JAM

chain, Polkadot will have comprehensive capabilities to support both conventional

Appchains and Rollup. This will ultimately position Polkadot as a leader in the future

blockchain world, becoming the world computer of Web3.

As the first common good smart contract platform developed on coretime with DOT as
the Gas fee, Magnet has successfully completed the previously planned development
tasks. Furthermore, the alignment between the Rollup module scheduled for milestone
3 and the emerging concept of JAM chain is a testament to the high level of synergy
between Magnet and the Polkadot ecosystem. However, the launch of the JAM chain is
expected to occur 18-20 months later. To prevent any mismatch between Magnet's
development and the JAM chain, Magnet has decided to postpone the development of
the Rollup module until the JAM chain interface is confirmed. This decision aims to

enhance development efficiency and mitigate development risks.

Meanwhile, as the influence of Polkadot continues to expand and technology undergoes
continuous upgrades, there will be an increasing number of development teams eager
to participate in the Polkadot ecosystem. Moreover, within the community, there are
high-quality ecosystem projects like Tanssi and Lastic that provide developers with tools
to facilitate the construction of their applications. However, for new developers entering
the ecosystem, they need to separately understand Polkadot-SDK, Tanssi, and Lastic,
and then integrate them based on their actual needs for development. This process

incurs intangible costs in terms of both technical and business learning.

In order to reduce the development learning costs for development teams, encourage
the emergence of a large number of common good applications, and ultimately promote
the prosperity of the Polkadot ecosystem and the application scenarios of DOT, Magnet
will integrate our development experience and economic model experience on Magnet.
We will abstract the operational modules based on coretime and integrate the
ecosystem functionalities provided by Tanssi and Lastic to create a Common Good
Stack for the community. With Magnet Stack, developers will be able to integrate the
Polkadot ecosystem in a one-stop manner and acquire the ability to build their own

business models based on DOT and coretime, allowing them to focus more on business

development. With Magnet Stack, whether deploying a parathread, container chain,
using Bulk coretime, or On-demand coretime mode, developers will be able to quickly
implement these through our services, ultimately facilitating the widespread application

of Polkadot technology to the greatest extent possible.

Furthermore, Magnet is currently undergoing continuous testing on the Rococo network.
We will continue to keep the Magnet Network updated in accordance with the progress
of Polkadot-SDK to ensure that Magnet can be synchronized online immediately after

Coretime is launched on Polkadot.

As of Milestone 2, the project has successfully improved optimization and updated its
overall economic system and operational logic on the public GitHub repository, in line
with ongoing progress. All features outlined in Milestone 2 have been developed, and
we are currently in the phase of continuous testing and code optimization. And for
Milestone 3, the main objective is the development of Magnet Stack, which
encompasses coretime and parachain functionalities. This Stack serves as a
comprehensive toolkit for developers, providing them with the necessary tools and
resources to integrate coretime and parachain features into their projects effectively.
Through continuous updates and improvements, Magnet ensures that the Stack
remains robust, reliable, and aligned with the evolving needs of the ecosystem. This
proposal is submitted with the intention of securing funding for our Milestone 3, totaling
USD $294,400.00.

2. The Achievement of Milestone 2

All development achievements of milestone 2 have been posted on Github, you can find
this in this link: GitHub
You can also follow the instructions to study how to interact with Magnet:

https://doc.maqgport.io/

Magnet Bulk Coretime Testnet has been online on Rococo, you can find it with this link:

Maanet Testnet on Rococo

https://github.com/Magport/Magnet
https://doc.magport.io/
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Fmagnet-rpc.magport.io%2Fws#/explorer

To facilitate use by the average user, we have additionally prepared a web-based
application, making it easier for users to experience all of Magnet's features. More
functionalities are currently in development, and you can try them out through this link:

Rococo Testnet Application

Development of DOT's WASM Platform

Enable Magnet to become a WASM smart contract platform with DOT as the native
GAS token and complete the GAS model mechanism. Development of the platform's
core functionalities, with updates on the development progress being synchronized and
posted on the public GitHub repository. You can find the instruction of deployment
Wasm Smart Contract with this Link.

Development of on-chain governance functionality
Completed on-chain governance functionality using DOT as the governance token.

As Magnet operates as a tokenless blockchain, all governance requirements will be
delegated to DOT holders. All development progress is synchronized with the public

GitHub repository. You can find the development detail with this GitHub link.

Optimizing Coretime Order Pallet

Following the development progress of Parity, upgraded the Coretime Order Pallet logic
to maintain optimal compatibility. Completed the compatibility work for Gas processing
logic between WASM and EVM. And developed and updated core functionalities to
Polkadot-SDK 1.7.0, all progress is synchronized to GitHub. This part is divided to three
part, locate respectively at Node, Order Pallet, and primitives.

Optimizing Profit Distribution Pallet

Following Parity's development progress, updated and adjusted the logic of the Profit

Distribution Pallet (e.g. Coretime credit account), ensuring this feature remains in sync

https://magnet.magport.io/bridges
https://doc.magport.io/smart-contract-deployment/wasm-contract-deployment
https://github.com/Magport/Magnet/tree/main/runtime/src/governance
https://github.com/Magport/Magnet/tree/main/node
https://github.com/Magport/Magnet/tree/main/pallets/order
https://github.com/Magport/Magnet/tree/main/primitives

with the latest coretime ordering logic at all times. After launching on-demand coretime
on Rococo, Magnet will active cross-chain(XCM) profit distribution on Rococo. Ensured
the accuracy and efficiency of profit distribution, with all progress being synchronized to
GitHub. You can find the development detail with this GitHub link.

Optimizing Blocks Assurance Pallet

Optimized the logic of the Block Assurance Pallet, refined the code for this feature, and
adjusted the configuration parameters. Simultaneously, in line with Parity's latest
development progress, update and optimize the code, preparing for future optimization
of the code logic for direct ordering by sovereign accounts. Ensure the stable block
production of the platform, with development progress being updated on the public

GitHub repository. You can find the development detail with this GitHub link.

Optimizing EVM and Bridge Functionality

Maintained EVM functionality, ensured synchronization with other EVM chains, and
enhanced the contract compatibility of Magnet EVM. And optimized the bridge
functionality and achieved a seamless user experience for the binding module.
Maintained the optimization and updating of EVM, with all progress being synchronized
to GitHub. You can find the development detail with this Pot and Assets Bridge.

Integrate the Latest XCM pallet for parachain communication

According to Parity's development progress, tested and optimized the XCM code to
ensure the reliability of this feature. Completed the HRMP channel testing, enabling
other parachains to transfer tokens to Magnet via XCM, and ultimately enter into the
EVM. And maintained communication with the Polkadot ecosystem, enabling the
seamless transfer of DOT to the platform. Development progress is updated on the

public GitHub repository. You can find the development detail with this GitHub link.

Upgrade Magnet to Polkadot-SDK 1.7.0 and optimize the code architecture

https://github.com/Magport/Magnet/tree/main/pallets/liquidation
https://github.com/Magport/Magnet/tree/main/pallets/assurance
https://github.com/Magport/Magnet/tree/main/pallets/pot
https://github.com/Magport/Magnet/tree/main/pallets/assets-bridge
https://github.com/Magport/Magnet/tree/main/runtime/src

To keep pace with Parity's development progress and adapt Magnet to the latest
Rococo Coretime module, Magnet has been upgraded to Polkadot SDK 1.7.0.
Furthermore, a comprehensive restructuring of all features and the code architecture
has been undertaken to accommodate the content changes in version 1.7.0, facilitating
future continuous upgrades and optimization of various functions. You can find this

from the overview link.

3. The Implementation Plan of Milestone 3

3.1 Maintenance of Magnet Network

The maintenance of the Magnet Network is critical for ensuring its reliability, security,
and performance. By continuously upgrading functional modules, progressing in testing
network improvements, and conducting ongoing monitoring, the network can provide
users with a seamless and dependable experience. This commitment to maintenance
helps to safeguard the integrity and usability of the network, ultimately enhancing user

satisfaction and trust in the Magnet ecosystem.

As Parity continuously updates its systems, our team must remain vigilant in monitoring
and managing the Magnet network to align with these changes. This involves regular
updates to address any identified bugs, vulnerabilities, or performance issues, as well
as implementing enhancements to keep the network competitive and aligned with
industry standards. Additionally, ongoing communication with the community and
stakeholders is crucial to gather feedback and prioritize development efforts effectively,

ensuring that the network evolves in line with user needs and expectations.

The Coretime module plays a pivotal role in the Magnet network, governing the
allocation and management of coretime resources. Maintenance of this module involves
constant monitoring for anomalies or issues such as performance bottlenecks or

security vulnerabilities, while upgrades aim to improve its efficiency, scalability, and

https://github.com/Magport/Magnet/tree/main

robustness. Thorough testing of new features and improvements is essential to validate

their effectiveness and minimize the risk of disrupting network operations.

The profit distribution module is responsible for fairly distributing profits generated within
the Magnet network to relevant stakeholders. Upgrades to this module may involve
optimizing algorithms, improving accuracy, and introducing new mechanisms to
enhance transparency and fairness in profit distribution. Careful testing and validation
are necessary to ensure that upgrades do not introduce unintended consequences or

biases in profit distribution.

Similarly, the profit calculation module requires upgrades to enhance accuracy and
reliability in calculating profits generated within the Magnet network. These upgrades
may focus on improving calculation algorithms, enhancing precision, and incorporating
additional factors for more comprehensive profit management. Rigorous testing and
validation are crucial to ensure accurate and reliable profit calculations without

introducing errors or inaccuracies.

The block assurance module ensures the integrity and reliability of block production and
verification processes within the Magnet network. Maintenance involves monitoring for
issues or anomalies that may compromise the security or stability of block operations,
while upgrades aim to enhance the efficiency, resilience, and security of block
assurance mechanisms. Thorough testing and validation are essential to verify the

effectiveness and robustness of upgraded block assurance mechanisms.

Monitoring and upgrades of the Polkadot SDK are essential as it serves as the
foundation for building and maintaining the Magnet Network. Monitoring involves
tracking updates and releases to identify new features, improvements, and bug fixes
relevant to the Magnet network. Upgrades aim to incorporate the latest SDK
enhancements, ensuring compatibility, performance optimization, and access to new
functionalities. Testing and validation of SDK upgrades are critical to ensure seamless

integration with existing Magnet components and mitigate potential compatibility issues.

3.2 Magnet Stack Functionality Development

In the process of developing Magnet Stack, several key steps are necessary to ensure
a smooth integration and optimal functionality. Firstly, a thorough analysis of the existing
functions must be conducted, encompassing support for multiple virtual machines
(EVM, WASM, MoveVM), Coretime (bulk and on-demand), advanced features like profit
calculation and distribution, as well as eco functions such as Lastic Integration and the
Appchain model. These functions will then be systematically defined as independent

components, each assigned a specific set of tasks to enhance modularity and efficiency.

Following the definition of functions and components, it's essential to determine
inter-component dependencies and interactions. By identifying these dependencies, the
components can be integrated seamlessly within the technology stack, ensuring
cohesive operation. Additionally, clear and consistent interfaces must be designed for
each component, facilitating smooth interaction and accessibility for external

developers.

Documentation and development guides play a crucial role in ensuring effective
utilization of the technology stack. Detailed technical documentation should be provided
for each component and the entire stack, including comprehensive API references,
feature descriptions, setup guides, and practical use cases. Furthermore, a
comprehensive development guide is essential, offering step-by-step instructions on
using the technology stack to build applications, covering everything from environment

setup to workflow implementation.

Practical application examples and tutorials are indispensable for developers looking to
leverage the technology stack effectively. Developing a series of example applications
that showcase the diverse functionalities of the stack will provide valuable insights.
Additionally, offering tutorials and case studies will help developers understand how to

apply the technology stack in various real-world scenarios and projects.

Finally, ongoing maintenance and updates are essential to keep the technology stack
relevant and efficient. Regular updates, based on technological advancements and
community feedback, should be implemented to introduce new features, optimize
existing components, and address any bugs or issues. A robust version control system,
utilizing semantic versioning, helps developers understand the nature and scope of

changes with each update.

Multiple Virtual Machines (VM): Magnet Stack supports multiple virtual machines to
accommodate different smart contract execution environments. This includes
compatibility with EVM, WASM, and MoveVM. By supporting multiple VMs, developers
have the flexibility to choose the most suitable environment for their specific use case,

thereby enhancing compatibility and interoperability within the ecosystem.

In this milestone, we will integrate MoveVM into our stack, to meet more varied
demands for VM.

Fundamental Function: The Magnet Stack encompasses fundamental functions
essential for its operation within the Polkadot ecosystem. One such function is
OpenGoy, facilitating transparent governance processes by enabling proposal
submission and on-chain upgrades, and ensuring democratic decision-making.
Additionally, the XCM (Cross-Chain Messaging) functionality allows seamless
interaction with other chains within Polkadot, facilitating secure communication and
asset transfer. Furthermore, the MultiSig feature enhances security and trust by
providing multi-signature transaction capabilities, allowing multiple authorized parties to
collectively approve transactions, thereby ensuring secure and reliable smart contract
deployment and execution. Together, these fundamental functions form the backbone of

Magnet Stack, enabling efficient and secure operation within the Polkadot network.

Coretime: Coretime functionality is essential for managing block production and
resource allocation within the Magnet network. The Magnet Stack offers two coretime

models: Bulk Coretime and On-demand Coretime. Bulk Coretime allows for the

pre-allocation of resources, while On-demand Coretime dynamically allocates resources
based on transaction demand. This flexibility enables efficient resource management

and ensures optimal performance under varying workload conditions.

This development will abstract two modes of operation, namely On-demand model and
Bulk Coretime model. Depending on the chosen setting, the corresponding

functionalities of other collaborative modules will automatically adjust accordingly.

Advanced Functions: The Magnet Stack incorporates advanced functions to enhance
operational control and management. This includes features such as Profit Calculation,
Profit Controller, Profit Distribution, and Block Assurance. Profit Calculation enables the
calculation of transaction fees and rewards, while Profit Controller allows for the
management and optimization of profit distribution. Profit Distribution ensures fair and
transparent distribution of profits among network participants, while Block Assurance

enhances the security and reliability of block confirmation processes.

In this development, a new parameter feature will be added to profit control, allowing
users to customize the minimum profit level they wish to achieve, thereby further
increasing the flexibility of profit control for users. Similarly, Profit distribution will also
introduce a set of parameters that allow users to customize the profit distribution target
addresses. Regardless of which Parachain the target addresses are on, profits can be
distributed via XCM. Lastly, for the Assurance function, the customizable waiting time
will dynamically adjust based on the Gas fees and the target difference, to further

enhance the user experience.

Eco Functions: Integration with Lastic, is an important infrastructure of coretime, which
will provide coretime market to the polkadot ecosystem. so we want to integrate Lastic
into our stack. In this way, developers can select the Lastic service when developing

projects with our stack, thereby obtaining coretime resources more stably and efficiently.

Appchain Model: The Magnet Stack supports different Appchain models, including
parathread and Tanssi-container chain. These models offer diverse options for
deploying and managing blockchain applications within the Magnet ecosystem. Para
threads provide parallel processing capabilities, enabling scalability and performance
optimization, while Tanssi-container chains offer containerized environments for
deploying and managing application-specific chains. This flexibility allows developers to
choose the most suitable Appchain model based on their application requirements and

deployment preferences.

Overall, Magnet Stack provides a comprehensive suite of functionalities designed to
empower developers and organizations to build and deploy innovative blockchain
applications with ease. By incorporating advanced features, supporting multiple VMs,
and offering diverse deployment options, Magnet Stack facilitates the development of
robust and scalable blockchain solutions, driving growth and adoption within the

ecosystem.

3.3 Architecture of Magnet Stack

[User Frontend)

[Mocro Pr‘oc:essimj J
v 1

4 ([(evm [svm] [(wasm) (movevn) [xem) A
(Profit Distribution) [Proxy | [Gov | m
| Profit control | (Mul‘tisigj [custom;ze Punc-t;on]
[Assurance) [Lastic) (Tomssi]

[Polkadot Coretime]

\ Ma\frne't Stack)

Magnet Template Layer

This layer forms the foundation of the entire tool, containing all the templates for
Substrate modules that can be instantiated with specific functionalities. These templates
should be designed for easy parameterization to allow customization based on user

configurations.

Dynamic Generator Layer

This layer is responsible for dynamically generating Substrate code based on the user's
provided configurations. This layer can not only rely on normal script measure but also
leverage Rust's macro system, especially procedural macros, to facilitate the dynamic

code generation process.

User frontend Layer

The user frontend layer is the interface that interacts with users, allowing them to select
desired module functionalities, configure parameters, and ultimately generate Substrate
code. This layer could be a web application, desktop application, or a command-line

tool, depending on your target user base and usage scenarios.

3.4 Magnet Stack Feature Overview

Category Functionality Notes
EVM For EVM smart contract
M WASM For WASM smart contract
MoveVM For Move contract
SVM For Solana smart contract (Future Plan)
Magnet Stack Fundamental OpenGov Proposal and on-chain upgrade
. XCM Interact with Polkadot ecosystem
function

MultiSig/Proxy |Multisig traction and Smart contract deployment

. Customize the desired profit margin to control the
Profit Control |, . . .
timing of coretime ordering
. In the on-demand mode, calculations are based
Profit) . oo
. on the cost per single coretime, while in the Bulk
Calculation :
mode, calculations are based on the average cost.
Advanced Function , Allows for the customization of the number and
Profit) e .
Distribution ratio of Profit distribution addresses, while also
supporting cross-chain profit distribution via XCM.
In the On-demand mode, the waiting time can be
Block dynamically reduced based on the current
Assurance |accumulation of Gas fees. Simultaneously, the
trigger time for forced ordering can be adjusted.
Lastic Coretime secondary market
_ a platform that simplifies multisig usage for teams
Eco Function Signet and provides a base upon which developers can
9 extend and integrate to create richer Multisig
experiences.
Parathread |[Standard Parathread
Appchain model
Tanssi Tanssi container chain
On-demand [On-demand coretime
Coretime model
Bulk Bulk Coretime

3.5 Workflow of Magnet Stack

i. Project Initialization: Developers create a new blockchain project using Magnet
Stack, they can quickly start the project by choosing from the preset network
configurations and templates provided by Magnet Stack.

ii. Module Selection & Configuration:

(1) Virtual Machines and Features Selection: developers select the desired virtual
machines and features from various Magnet Templates to tailor the project to
their specific needs.

(2) Coretime Model Configuration: Developers choose between On-demand and
Bulk modes for the Coretime model. The selection automatically adjusts other
functionalities to align with the chosen mode.

(3) Fundamental Functionalities Configuration: Developers configure the core
functionalities, with OpenGov for governance and XCM for cross-chain

communication respectively. MultiSig, an optional feature, can be chosen for
enhanced security through multi-signature transactions.

(4) Advanced Functionalities Configuration: Developers can adjust the
parameters of Profit Control, Calculation, Distribution, and Block Assurance to
tailor the configuration to their business needs.

iii. Code Generation: Using the dynamic generator layer of Magnet Stack, the
corresponding Substrate code is automatically generated based on the selected
modules and configurations. This step reduces the need for manual coding and
improves development efficiency. When the code generation has finished, the developer
will have all necessary codes to deploy nodes for their independent network with
per-selected features.

iv. Business Logic Development: Developers have the flexibility to build their projects
using Pallet modules or Smart contracts tailored to their specific business requirements.
For Pallet modules, developers can create custom logic and corresponding APls, and
then seamlessly integrate the pallet into the pre-existing Substrate codebase, adhering
to Substrate's development standards. In the case of Smart contracts, developers can
establish the rules and operations of the blockchain application, creating transaction
logic to manage data and interactions effectively. Furthermore, developers can design
user interfaces to facilitate end-user interaction and develop off-chain functions for tasks
that are more efficiently handled outside the blockchain. Such capabilities grant Magnet
Stack the versatility to cater to the varied needs of users across different use cases.

v. Deployment & Release: After completing testing and optimization, the project is
ready for deployment. Developers deploy the nodes using the Substrate-based
blockchain network code generated by Magnet Stack, which includes the pre-defined
features and functionalities. This process involves setting up the network infrastructure,
starting the nodes, and registering the parathread. and ensuring they are properly
interconnected. Once the network is up and running, developers can deploy their smart
contracts to the network or directly initial the business module. Final testing and
verification are conducted to ensure that all components of the project are functioning
correctly and efficiently. After confirming that everything is operating smoothly, the
project is officially released and made available for use.

And here is the flowchart for the workflow:

C onpis,u(‘e,\l/

Assembler
Frontend

Magnet
Stock

Tentative

S'tor‘ouje_

Generation
State

The workflow commences as users furnish parameters essential for the task. These
parameters are subsequently analyzed during the assembly phase to determine the
specific requirements. Following this analysis, the requisite modules are fetched and
compiled into suitable code structures. Once the assembly process is complete, the
finalized code is delivered to the users, enabling them to utilize the tailored solutions

effectively.

4. Benefits

For the Polkadot Ecosystem

Lowering Development Difficulty: By reducing the complexity of developing on
Polkadot, Magnet Stack encourages more developers to choose the Polkadot
ecosystem, further promoting the creation of infrastructure and enriching the
business environment within the ecosystem.

Attracting Users: Magnet Stack bolsters the Polkadot ecosystem by drawing in
new projects and promoting their success, thereby increasing user activity and
ecosystem vitality.

Expanding DOT Demand: Magnet Stack enhances the utility of DOT by
broadening its applications, thereby contributing to a more balanced supply and

demand dynamic for the token.

For Developers:

Business Models around Coretime: Magnet Stack offers developers business
models focused on coretime, enabling them to effortlessly configure their
coretime requirements and derive revenue from operating their appchains.
Reducing Legal and Financial Risks: By eliminating the necessity of issuing a
native token, developers can reduce legal and financial risks and integrate more
closely with the Polkadot ecosystem.

Focusing on Business Development: By lowering development difficulty and
integrating important functionalities needed for appchains, Magnet Stack allows

developers to concentrate on business module development.

For DOT Holders:

Diverse Service Options: The capability of Magnet Stack to rapidly onboard
numerous appchains offers DOT holders more scenarios to utilize their tokens,
thereby broadening the range of services available to them.

Enhancing DOT Demand: The increased number of appchains further boosts

the demand for DOT, contributing to the appreciation of its value.

lll. Bringing Fresh Blood to the Ecosystem: By attracting more projects and
developers, Magnet Stack injects fresh blood into the Polkadot ecosystem,

enhancing market liquidity and depth.

5. Magnet Stack Business Model

The business model of Magnet Stack is structured to cater to the following aspects:
Customized Requirements: Magnet Stack aims to address the specific needs and
preferences of its clients by offering tailor-made solutions. This involves closely
collaborating with clients to understand their unique requirements and developing
customized features, functionalities, and solutions that align with their business

objectives.

Subsequent Maintenance and Upgrade Demands: In addition to providing initial
customizations, Magnet Stack also commits to offering continuous support and
maintenance services. This involves addressing any issues that arise
post-implementation, providing technical assistance, and ensuring that the platform
remains up-to-date with the latest technology trends. Furthermore, as clients' needs
evolve over time, Magnet Stack remains flexible to accommodate future upgrades and

enhancements to the platform.

Value-Added Services: Overall, Magnet Stack's business model is centered around
delivering value-added services that go beyond basic product offerings. These services
may include consulting, training, ongoing support, and assistance with implementation
and integration. By providing comprehensive solutions and support, Magnet Stack aims
to build long-term relationships with clients and generate revenue through the delivery

of high-quality services.

6. Budget

The current application is for the development costs of Milestone 3, with a total
development duration of 3660 person-hours at an hourly rate of $80, resulting in a total
cost of $294,400 (the amount of DOT will be converted based on the EMA-7 price on
the day of the official submission). The development content for this phase is expected
to be completed within 4 months. The specific development breakdown of each

milestone is as follows:

Milestone Task Notion Hours Cost

Maintain the continuous update and
network stability of Magnet, update
the coretime model with Rococo, and
handle the emergency 600 48000

Maintenance

Logic design and function |Design business logic and detailed
analysis functionalities. 80 6400

For the detailed design of added
Component Definition for |functionalities, ensure they better

Modularity conform to modularization
requirements. 240 19200
Integrate MoveVM For Move contract 160 12800
Integrate Lastic Coretime secondary market 200 16000

Integrate MultiSign and [Multisign Txs and Smart contract
Proxy deployment 100 8000

Customize the desired profit margin
to control the timing of coretime
ordering, this function can't be active
in the Bulk coretime model 360 28800

Milestone3
Upgrade Profit Control

In the on-demand mode, calculations
are based on the cost per single
Upgrade Profit Calculation |coretime, while in the Bulk mode,
calculations are based on the
average cost. 400 32000

Allows for the customization of the
number and ratio of Profit distribution
Upgrade Profit Distribution [addresses, while also supporting
cross-chain profit distribution via
XCM. 380 30400

Upgrade Block Assurance

In the On-demand mode, the waiting
time can be dynamically reduced
based on the current accumulation of
Gas fees. Simultaneously, the trigger
time for forced ordering can be
adjusted.

300

24000

Develop the user interface
and the generator

Develop an intermediary business
layer for Magnet Stack, enabling it to
fetch specific codes based on user
needs. Moreover, to facilitate user
access, a frontend will be developed
that encompasses all operational
features of the Template.

420

33600

Integration and Testing

Integrate all functionalities and test
for optimization.

320

25600

Technical Documentation
Writing

Guidance Documentation

120

9600

Milestone 3 Total

3660

294400

7. Team Member

Acai (Xianzhe Liang) PBA alumni. holds a Bachelor's degree in Computer Science and

a Master's degree in Management. He is the project leader responsible for project

development planning, solution design, and development progress management. He

previously worked at ASUS. htips://www.linkedin.com/in/xianzhe-liang-849446282/

Kyle with a Master's degree in Applied Actuarial Science and a Postgraduate Diploma

in Computer Science from the University of Kent. His experience working at Bangkok

Bank provided him with a comprehensive understanding of crypto from both financial

and technical perspectives, which became a cornerstone for his venture into blockchain

project development in 2017. Since then, Kyle has played pivotal roles in product design

and project management across various projects,

https://www.linkedin.com/in/xianzhe-liang-849446282/

Daniel PBA alumni. Previously worked at SenseTime, Amber Group as a senior
software engineer, with experience in backend development for Al model and crypto

wallet design. Well-versed in Substrate, Golang, Rust, and Solidity.

Toints
Dey, serves as the Technical Lead and Core Engineer for the project, managing and
executing its technical development. Previously, he held the role of Technology Lead at

Mytoken and was also involved in maintaining a fork of Monero for Bitmain.

Vincent Yu holds a Master's degree in Electronic Information and works as a
Development Engineer, responsible for the development of project functionality

modules.

Zachary holds a Master's degree in Computer Science and works as a Development

Engineer, responsible for the development of project functionality modules.

Alex formerly provided security software services for the traditional banking industry.
Entered the blockchain industry in 2018. Proficient in blockchain application
development and familiar with mainstream blockchain technologies, including Substrate.

Skilled in development languages such as Rust.

Leed officially entered the blockchain industry in 2018. As a core developer on our
team, he contributed to the development of the project's central functions. He is

well-versed in Substrate, Cosmos, and Rust.

	Magnet Milestone 3 Proposal: An Appchain Tech Stack leverages the Coretime Model to enhance DOT use cases and facilitate Polkadot's growth
	
	Proponent: 15mAbCUcBa7jT8Rak8j7hC5w9jUM8b7LFUuhp9nENqmtehLn
	1. Context
	2. The Achievement of Milestone 2
	3. The Implementation Plan of Milestone 3
	
	3.1 Maintenance of Magnet Network
	3.2 Magnet Stack Functionality Development
	
	3.3 Architecture of Magnet Stack
	3.4 Magnet Stack Feature Overview
	3.5 Workflow of Magnet Stack

	4. Benefits
	5. Magnet Stack Business Model
	6. Budget
	7. Team Member

