
 

GSoC 2017 - Clustering of Search Results 
   

About me 
 
Name: Richhiey Geeverghese Thomas 
 
Email: richhiey1996@gmail.com 
 
Github: https://github.com/richhiey1996 
 
Emergency contact: 9167060079 / 9892803695 
 
Nationality: Indian 
 
 

Background Information 
 
I would like to apply to Xapian Search Engine Library as a part of Google Summer of Code 
2017. I was a part of GSoC 2016 with Xapian where I had worked on clustering of search 
results. I am currently working on getting it merged in and hope to get it merged in before the 
official start of GSoC 2017. Since I have been working with Xapian, I am fairly used to the 
codebase and wouldn’t require time to get used to the development workflow. (Always learning 
small things about the workflow on git and otherwise) 
 
My main aim with GSoC 2017 would be to improve the clustering system developed last time by 
adding in automated performance analysis, dimensionality reduction and developing an 
agglomerative hierarchical clusterer and merge all of the work either into the cluster branch or 
master branch. 
 
I will be working from India (Mumbai – UTC+05:30) and my expected work hours will be from 
IST 12pm to 6pm till the first phase of evaluations and thereafter, from IST 12 pm to 9 pm. I will 
be able to put in more time during the weekends incase the project requires more attention. 
 
This project will be my main focus during the time of the program. Xapian is the only 
organization I will be applying to for GSoC 2017 and this is the only project within Xapian I will 
be applying for. 
 
 

Project Information 
 
 
Looking at the current state of the API, once we can merge all the code from last year, we can 
have a straight forward Spherical KMeans Clusterer which performs fairly well. Ahead from 
here, there are three main directions I want to work in this year: 
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Automatic Performance Analysis 
 
For any clustering system, it is necessary to evaluate the results returned after clustering to find 
out whether the results are optimal. In case of clustering, result evaluation isn’t a trivial 
operation. Since the documents that the clusterer will be clustering are search results (stored in 
an MSet), it wouldn’t be fair to assume ground truth tables for the documents. We will not have a 
document to label mapping to evaluate how correctly documents are clustered. Thus, using 
internal clustering evaluation methods would be more favorable instead of external clustering 
evaluation methods. 
 
Internal clustering evaluation methods revolve around the requirements of clustering i.e. the 
intra-cluster distance should be as less and inter-cluster distance should be as high as possible. 
This can give us an idea of how well a certain clustering configuration worked, and accordingly 
be able to change one or more of the parameters involved. 
 
I guess a regular use case of this API will not provide a way to have ground truth labels for 
documents. Thus internal evaluation techniques would be the better option. I would thus like to 
introduce a few internal clustering evaluation techniques. They are: 
 
1) Silhouette coefficient 
 

-​ Silhouette coefficient is calculated with mean intra-cluster distance (a) of a point and the 
mean nearest cluster distance (b)  : 
​ S(i) = (b(i) - a(i)) / max(a(i),b(i))  
The best value is 1 and the worst value is -1. Values near 0 indicate overlapping 
clusters. 
The silhouette coefficient shows how well a point fits in its cluster, compared to the other 
clusters. 

​  
Link : https://en.wikipedia.org/wiki/Silhouette_(clustering) 
 

2) Dunn Index 
 

-​ Dunn Index is another internal evaluation method. Dunn Index can be used to find the 
fitness of a clustering result for different number of clusters. The result with maximum 
Dunn Index can be chosen. 

​  
Link : https://en.wikipedia.org/wiki/Dunn_index 

 
3) Root Mean Square Standard Deviation 
 

-​ RMSSD is a measure of the homogeneity within clusters 
​  

Link : Page 75-76 of 
http://cda.psych.uiuc.edu/multivariate_fall_2012/systat_cluster_manual.pdf 
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4) Calinski-Harabasz index 
 

-​ The cluster index of Calinski and Harabasz is calculated using the following equation 
​ ​ CH(k) = [trace B / (K -1)] / [trace A / (N - K)] 
​ ​ Where, 
​ ​ trace A = The error sum of squares between different clusters (inter-cluster) 
​ ​ trace B = the squared differences of all objects in a cluster from their respective​
​ ​ ​     cluster center 
​ Link : 
http://stats.stackexchange.com/questions/97429/intuition-behind-the-calinski-harabasz-index 
 
5) Davies-Bouldin Index 
 

-​ This is an internal evaluation scheme, where the validation of how well the clustering has 
been done is made using quantities and features inherent to the dataset. 

 
Link : https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index 

 
Evaluation methods like these are useful as heuristics to compare various clustering solutions. 
Thus if we have two clusterers, we can use these indices to compare the quality of clustering, 
using different parameters for some clusterers. 
As Olly rightly suggested, it would be better to have a namespace with these functions. The 
function names can be named after the corresponding evaluation technique. These function can 
give an overview of the clustering done. 
// Use Clusterer and get the ClusterSet ‘cset’ 
 
double metric = silhouette(cset); 
metric = dunn_index(cset); 
metric = rmssd(cset); 
metric = calinski_harabasz(cset); 
metric = davies_bouldin(cset); 
 
 
Dimensionality Reduction 
 
In text clustering, we see that the term vectors created from the text documents turn out to be 
very high dimensional since a document can contain a large number of terms. This high 
dimensionality causes problems such as too common or too uncommon words which dilute the 
information in the vector and increase the size, thus increasing run time. 
 
The main ideas used in dimensionality reduction are : 

●​ Stemming 
●​ Removing frequent words (Stopword removal) 
●​ Removing uncommon words 
●​ Semantic dimension reduction (Using LSA) 
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Stemming, stopword removal and removal of uncommon words will be done as a part of noise 
reduction in the preprocessing step. In addition to this, we can pass an option within the 
constructor of the clusterer if it requires LSA. 
 
 
Stemming : 
 
Xapian Document termlist already contains stemmed words as well unstemmed words. Thus 
currently, simply removing the unstemmed words, to get all the stemmed words in the document 
 
 
Stopword removal and uncommon words: 
 
The Document termlists contain a lot of terms, out of which a few are terms that are used 
frequently in language like articles and prepositions. These terms do not add value to the 
termlist and can thus be removed. Xapian has a list of stopwords which can be loaded into 
Xapian::SimpleStopper to identify stopwords before calculating their TF-IDF weights. 
 
In case of uncommon words, most such terms are because of spelling mistakes or words that 
carry very less information. Thus, these words can be removed by checking how many times 
these same words have occurred in other documents. If they have occurred too few times (for 
example, only once), we could easily remove it by keeping a threshold. One way to do this 
would be by keeping the threshold at 1, so that any noise in the document termlists which do not 
contribute to distance calculations are removed. 
 
 
Semantic dimension reduction 
 
This is the main thing that needs to be implemented in GSoC this year. The above three 
techniques are methods that are easy to add into the process, but adding in an unsupervised 
method to reduce dimensionality could be a tad bit harder. This will be applied on termlists that 
have already been stemmed and scanned for stopwords. For this, I would like to implement 
Latent Semantic Analysis for reduction of text document vector size. 
 
For this, we could create a DimReduction class to be inherited by LSA class, which will 
implement the functionality required. A method within this LSA class called reduce() will reduce 
a point given to it and give back a Point with the reduced termlist. 
 
The LSA class will implement a transform function which will take the initialized points and 
return these Points with the reduced term document vectors. The most computationally 
intensive part of LSA is calculating the Singular Value Decomposition of the vector. We will be 
doing SVD with the help of randomized algorithm. This improves the speed. Follow the below 
links for more information on the randomized algorithm- 
https://research.fb.com/fast-randomized-svd/ 
https://arxiv.org/abs/0909.4061 
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The decomposed vectors will help us get the new values for the terms, and the ‘n’ highest 
values are selected from the matrix for each document. 
Thus, the method for getting LSA-reduced vector would be : 

1)​ Create term document matrix (term frequency) 
2)​ Compute SVD of the term matrix using randomized SVD 
3)​ Compute the reduced document vector 

 
Using LSA, we will choose the top ‘n’ terms as required, and then create a document vector with 
the ‘n’ top ranked terms for the document, with respect to the corpus. 
 
 
 
Hierarchal Clustering 
 
It is necessary to have both partitional as well as hierarchal clustering algorithms for clustering 
search results because both these methods have their advantages and disadvantages. 
Hierarchal clustering is divided into two broad types based on their technique, divisive or 
agglomerative. 
 
Within a document corpus, it is better to see which document is closer to another cluster or 
document, than checking which documents are dissimilar to an entire corpus. Thus, it would be 
better to develop an agglomerative strategy to cluster documents. 
 
For hierarchical clustering, we could subclass Clusterer and create a new Clusterer named 
HierarchicalClusterer. This clusterer will take the MSet as an input and give ClusterSet as 
output. 
 
For the hierarchical clusterer, the one of the new challenge to face is the merge step where we 
merge two different clusters. The two clusters having shortest distance are grouped together 
and merged. In this, we would have to specify various linkage criterions for merging the clusters. 
I would like to name three linkage criterions : 
 

 
 

●​ Maximum or complete-linkage clustering 
​ In this, distance between two clusters is the maximum distance between two points (one ​
in each cluster) 
 

●​ Minimum or single-linkage clustering 
In this, distance between two clusters is the minimum distance between two points (one 
in each cluster) 
 

●​ UPGMC or Centroid linkage clustering 
​ In this, distance between two clusters is the distance between their centroids 
 
All of the above techniques seem possible with the current API and by letting Xapian::Cluster 
have a function to merge two clusters. 
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Another challenge is to do all this quickly, because the complexity of a simple agglomerative 
clustering would go upto O(N^3), since we have to calculate O(N^2) distances and O(N) 
iterations. A good way to do this would be to store the k-nearest neighbours for every point so 
that we can reduce the complexity by reducing the number of distance computations being 
carried out. With a double linked list, we can get a complexity of O(kN log(N)) which is 
considerably lesser. A paper talking about this algorithms is : 
 
https://www.researchgate.net/publication/268324352_Efficient_agglomerative_clustering_using_
k_nearest_neighbor_graph 
 
We can evaluate the results obtained by Hierarchical clusterer and KMeans in terms of quality of 
clusters returned on different datasets as well as the run time over a number of documents. 
 
 
 
 
Triangle Inequality 
 
This is a technique that can reduce the number of distance computations required in Clusterers 
while finding the closest clusters. When doing a normal KMeans run, we check the distance of 
each point with every other point in the ClusterSet. A lot of these computations are redundant, 
because a point that is far away will not be a part of the cluster. We can reduce redundant 
computations by finding such points. 
 
Here is a paper which shows us how to do it for KMeans : 
 
http://users.cecs.anu.edu.au/~daa/courses/GSAC6017/kmeansicml03.pdf 
 
The criteria to find out which points don’t need to be calculated can be extended to the 
AgglomerativeClusterer too. It can considerably reduce the amount of time taken for the 
Clusterer to run. 
 
Here is a paper which shows us how we can implement it with the AgglomerativeClusterer : 
 
Page 7, Heading 4 in 
http://ai2-s2-pdfs.s3.amazonaws.com/1fcd/8971378cfbfe9d52889493af5c05b9a345e5.pdf 
 
 
Final Notes 
 
At the end of this, we should have a clustering interface which can take in an MSet and return a 
ClusterSet containing the clusters and their respective documents. We will have 3 clusterers, a 
partitional Spherical KMeans clusterer, an agglomerative hierarchical clusterer and a dummy 
Round Robin clusterer which should look like : 
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KMeans (num_of_clusters, max_iters, distance_metric, init_method, dim_reduction) 
RoundRobin (num_of_clusters) 
HierarchialClusterer (num_of_clusters, linkage, distance_metric, dim_reduction) 
 
 

 
TIMELINE : 
 
Through experience, I have learnt that this is the most important part of the proposal and due to 
less foresight in my previous year, I wasn’t able to make a perfect timeline for the project, 
because of the way the project developed. This year, I will try to keep in mind these mistakes 
and make it well planned. 
 
I would like to plan weekly from May 4th onwards since that would be a good level of granularity. 
 
 
 
Present - May 4th : 
Merge existing PR for KMeans Clusterer: 
 
The main aim for this part is to merge the current PR open for the KMeans clusterer after 
reviewing the entire code and adding in the needed changes. In case this gets done earlier, a 
stretch goal for this period is to add in multiple distance metrics. Currently, we only have the 
Cosine Similarity. It would be good to add in Euclidian and Manhattan distance metrics with 
appropriate tests. 
 
May 5th - May 11th : 
Silhouette coefficient: 
 
Start by setting up the ClusterEvaluation class and create a function for Silhouette which should 
find the average silhouette coefficient over the ClusterSet. This implementation will have a 
docstring and tests will be written for this evaluation metric. We will also need to update the 
User Guide. This will also act as buffer time for merging the old PR if more time is needed, since 
only one task is taken up for the week. 
 
May 12th - May 18th : 
Dunn Index and RMSSD : 
 
Similar to Silhouette class, we can create functions for Dunn Index and RMSSD and write 
appropriate docstrings to explain the indices and tests for these two evaluation metrics. 
 
 
 
 
 

 



 

 
May 19th - May 25th : 
Calinski-Harabasz index and Davies-Bouldin index 
 
Similar to the previous week, we can create functions for CalinskiHarabasz and DaviesBouldin 
and write appropriate documentation to explain the indices and tests for these two evaluation 
metrics. 
 
May 26th - May 31st : 
Buffer time for fixes and optimizations 
 
Incase the project runs behind schedule or to add in optimizations that could help performance, 
we could use this time for finishing the work up on the ClusterEvaluation class. 
The stretch goal for this period would be to add in the KMeans++ initialization.  
KMeans++ is a way to initialize the centroids of the KMeans Clusterer so that these initial 
centroids are as far away from each other as possible. Since the output of KMeans depends on 
the initial selection, KMeans++ gives faster conversion and better clusters too. It will be useful 
evaluate the difference in clustering results with the help of ClusterEvaluation class. 
 
June 1st - June 7th : 
Implement various linkage criterions 
 
Implement and test the three linkage criterions i.e complete-linkage, single-linkage and 
centroid-linkage clustering. These will be implemented as private methods within the ClusterSet 
class 
 
June 7th - June 13th : 
Start with work on hierarchical clustering 
 
Create the class HierarchicalClusterer by inheriting Clusterer class and implement the helper 
functions (mainly the merge method) needed to implement the cluster method. Implementing 
tests for the merge method would be necessary. 
 
June 14th - June 20th : 
Implement the agglomerative clusterer : 
 
Using the helper methods and the linkage criterions, we can implement the clustering 
functionality within the cluster method, inherited from Clusterer. This clusterer should return a 
ClusterSet containing Cluster objects. 
 
June 21th - June 27th : 
Fixing, optimizing and profiling the agglomerative clusterer : 
 
Checking whether the hierarchical clusterer is running fast enough to be useful by profiling and 
checking which parts take the most time, adding in language optimizations if any, and adding 
any fixes 

 



 

 
June 27th - June 28th : 
Phase 1 evaluations and mentor feedback on project so far 
 
 
29st July - 4th July : 
Evaluate KMeans and Agglomerative Clusterer on data with ClusterEvaluation 
 
We can evaluate both these clusterers in terms of running time and quality of clustering with the 
help of ClusterEvaluation class on different datasets such as BBC dataset and 20 newsgroups 
datasets.  
 
The links to both these datasets are: 
20 newsgroups dataset: 
http://qwone.com/~jason/20Newsgroups/ 
 
BBC datasets: 
http://mlg.ucd.ie/datasets/bbc.html 
 
Other datasets that are found better can be used too. 
If not already implemented, kmeans++ should be implemented and evaluated in this period.  
By the end of this period, we should have a benchmark of how well KMeans with both its 
initializations and the HierarchicalClusterer on different datasets, with different corpus sizes, 
and  without dimensionality reduction. 
 
5th July - 8th July : 
Dimension Reduction in the preprocessing 
 

1)​ Stemming - This is already done by Xapian, so this shouldn’t be a problem. 
2)​ Stopword removal - Xapian provides stopper class and a list of stopwords. Thus we can 

identify stopwords and remove them. 
3)​ Uncommon words - Remove terms that occur only once in the corpus 

 
Make sure a reduced termlist can be created by 8th July and evaluate, mainly for run time. If 
time permits, we could even see changes in quality evaluations with reduced termlists. 
 
 
9th July - 28th July : 
Implementing LSA for dimension reduction 
 
9th - 13th July : 
Add in a way to create a document-term matrix with the entry for each term being its frequency 
among documents in the corpus. Create this to pass to an SVD solver. 
 
14th-21th July : 
Implement the randomized SVD solver and find the decomposed matrices to calculate the 
reduced document termlist. Write tests for components of the SVD system. 
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22nd - 25th July : 
Use the decomposed matrices to calculate the reduced document termlists and return the Point 
with reduced termlist. Write tests for the reduced document list being returned. 
 
26th - 28th July : 
Update documentation and buffer time to make up for any loss of work in the month. 
 
29th - 30st July : 
Phase 2 evaluations and mentor feedback on project so far 
 
31th - 3rd August : 
Testing LSA and time for fixes and optimizations 
 
Profiling and optimizing the written code will be done in this period. This period with the above 
two days will act as a buffer to finish up DimReduction by this time 
 
4th August - 5th August : 
Compare clusterer results without LSA and with LSA 
 
Compare the running time changes and the quality of the clusters returned and document these 
changes for future reference. 
 
5th August - 10th August : 
 
Implement triangle inequality for KMeans to speed up the the Clusterer and test on a dataset to 
check the speed up in runtime. 
 
11th August - 15th August : 
 
In a similar way, add in triangle inequality to the hierarchical clusterer and test on a dataset to 
check the speed up in runtime. 
 
15th - 20th August : 
Merging all PR’s that have been opened and cleaning up all the code 
 
Make sure all the work that has been done has been merged into the right target branch 
 
20th - 25th August : 
Updating documentation wherever needed 
 
I’m not sure where all we would need documentation for the Clustering functionality, but it is safe 
enough to assume 5 days to finish off all the documentation work. 
 
 
 

 



 

 
25th August - 29th August : 
Finish up coding and documentation (Final submission) 
 
Get mentor feedback on the project, get the work product report ready 
 
 
 
RELEVANT DISCUSSIONS: 
 
https://lists.xapian.org/pipermail/xapian-devel/2017-March/003095.html 
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