Unit 1 Practice - Solutions & Hints

Lesson 1 - Measurement Challenges

Solutions will vary.

Lesson 2 - Proportionality and Similar Triangles

Lesson 3 - The Tangent Ratio

- 1.
- 2. a. They are equal
 - b. They are parallel
- 3. a) 0.15 b) 8.5 degrees e) 10.6
- 4. d) 91.8m
- 5. 13.8m
- 6.
- 7. b) 15.4m
- 8. You could draw a similar triangle and use the proportionality of similar triangles
- 9. b) 55 degrees

Lesson 4 - Sine and Cosine

1.		
	a.	0.5
	b.	0.866
	C.	0.866
	d.	0.5
	e.	30°
	f.	60°
2.		
	a.	5/13
	b.	12/13
	C.	12/13
	d.	5/13
	e.	23°
	f.	67°
3.		
	a.	0.93
	b.	0.37
	C.	0.37
	d.	0.37
4.		
	a.	21.3
	b.	14.9
	C.	14.9/26 = 0.57
	d.	21.3/26 = 0.82
5.		
6.		
	a.	The tangent is slope. To find the tangent, divide rise by run (divide sine by cosine)
	b.	0.7 and 1.4
	C.	It becomes greater than 1
7.	Based	on the approach using shadows, as shown in the lesson video:
	a.	Min: 0, Max: 1
	b.	Min: 0, Max: 1

c. Min: 0, Max: infinite (explain why this is the case!)

Lesson 5 - Right Triangle Trigonometry

1.

- a. 1
- b. 5.5
- c. 30.6
- d. 71
- e. 500

2.

- a. 68°
- b. 30°
- c. 49°
- 3. Solve (completely measure) each right triangle.
 - a. Angles: 20°, 70°, 90° Sides: 0.34, 0.94, 1
 - b. Angles: 30.5°, 59.5°, 90° Sides: 33, 56, 65
- 4. Angles: 35°, 55°, 90° Sides: 100, 142.8, 174.3

5

6. Base: 32.17, Height: 13.79, Diagonal: 35, Angle: 23.2° or 66.8°

Lesson 6 - Applications of Right Triangle Trigonometry

- 1. 594.7 m
- 2. 59 m
- 3. 31.5°
- 4. 324 m
- 5. 67.4°
- 6.
- a. 55.9 m
- b. 57 m
- c. 5.4 m
- 7. 32.4 ft
- 8.
- a. 294.4 ft
- b. 9.6 ft/s
- c. 11 seconds more
- 9. 463.2 ft

Lesson 7 - The Pythagorean Theorem

- 1. 125.1 m
- 2. 55
- 3. No
- 4. 15.6
- 5. 127.3 ft
- 6. The diagonal of the door frame is 93.9 feet, so the table will not fit
- 7. 8.54 m
- 8.
- a. 15 steps
- b. 420 cm
- c. 499.3 cm
- 9. x = 5, the sides are 6, 8, 10
- 10. 72 cm and 65 cm

Lesson 8 - Area

- 1) The rectangle 2) a. 136 square cm b. 36 square cm 3) 30 4) 248.8 5) 311.6 square inches, the 32 inch monitor is 40% bigger 6) 295.2 7) a) A = .5*h*b1 + .5*h*b28) The areas are equal 9) 10) No 11) It works for all rectangles (which include squares) 12) 13)
- 10. Drop a perpendicular from the largest angle to the opposite side. Then use the two right triangles to prove the proposition
- 11. Drop a perpendicular from the right angle to the hypotenuse. The proof follows from here. This implies that the two acute angles of a right triangle are complementary (add to 90 degrees).