
Incremental cost backoff in A* 
 
Assume C(n), the cost from the start to node n 
Assume H(n), the heuristic (distance based cost estimate) from n to the goal.  
 
A* explanation 

In A*, when selecting nodes to consider from the open set, you pick the node which 
minimizes C(n)+H(n). This is effectively selecting the most promising node, the node that 
minimizes cost from start and cost to goal.  

However, the heuristic function needs to be finely tuned so that it doesn’t consistently 
overestimate or underestimate in general. If the heuristic function underestimates cost, A* 
performs like Dijkstra—an equally expanding sphere nodes. (if the heuristic function is always 
zero, A* literally is the same as dijkstra) If the heuristic function overestimates cost, it will almost 
completely ignore cost and just pick the path that minimizes the heuristic distance. 

 
Difficulties with heuristic cost functions in our application 

In our application, it is very difficult to have an accurate heuristic function because the 
heuristic function doesn’t take into account the terrain it is passing over (because that would be 
computationally prohibitive). Sometimes our heuristic grossly overestimates the cost to goal, 
such as when the terrain is extremely easy to navigate (e.g. superflat worlds), and sometimes it 
grossly underestimates the cost to goal (e.g. extremely rough terrain, like climbing mountains).  
 
Our implementation 

In our implementation of A*, it uses the standard equation of C(n)+H(n) to select nodes 
to consider. However, since we have a time-limited application, once it runs out of time we need 
to select the most promising node to navigate to (called “partial solution selection”).Of course, if 
it selects a node in the goal while running, it will immediately return that node and it won’t have 
to go partial solution selection. 
 
Partial solution selection overview 
Partial solution selection is when the graph search runs out of time without finding a full solution 
to the goal node. This can happen for many reasons: maybe the goal is so far away that that 
chunk isn’t loaded, or maybe it’s so far away that it couldn’t get all the way there in the graph 
search in time. So, we need to select one of the nodes we considered as a partial solution, and 
we will navigate to there. In this selection, we aren’t limited to the open set, we can select any 
node that the search has considered in its run time. Once we arrive, we will calculate another 
path to the goal. We call this “path stitching”. Once the current path finishes and we aren’t in the 
goal node, we recalculate.  
 
Partial solution selection implementation 
The standard way to select an A* partial solution is picking the node with the lowest overall 
C(n)+H(n). 



When the cost heuristic underestimates, the node with the lowest C(n)+H(n) will be the starting 
node, or one very close to it. (see chart 1 for example of graph with positive resulting slope) 
 
 
This is why we decided to use an incremental backoff of the cost heuristic.  
Instead of keeping track of the best node so far by C(n)+H(n) during the search, we keep track 
of the best node by various metrics: H(n)+C(n)/x for various value of x. 
Then, at the end, we start with the lowest value of x we kept track of and move upwards. Once 
we find a value of x for which the best node is more than 5 blocks from the start, we select that 
one.  
Here’s why this works. 
Note that H(n) and C(n) are roughly linear functions with respect to taxicab blocks to goal and 
start, respectively. Therefore, H(n)+C(n)/x are all noisy linear functions. 
By modifying x, we are modifying the slope of H(n)+C(n)/x with the goal that the function 
decreases as you get farther from the start and closer to the goal. (this way the node with the 
lowest value in this function will be close to the goal) 
The reason why we slowly increase x in the evaluation is this allows us to pick the value of x 
that pays attention to C(n) the most (high values of x basically result in ignoring C(n) because 
C(n)/x is almost zero compared to H(n)). And the reason why we pick the first one that results in 
the best node being more than 5 blocks from the start is that if the best node is more than 5 
blocks from the start, it’s very likely that the slope of H(n)+C(n)/x is negative. (see chart 2 for 
example with negative resulting slope) Of course, if it was a perfect linear function, the best 
node would be the start node if the slope is positive, and the best node would be the goal node 
if the slope was negative. However, these are very noisy linear functions. It’s possible that a 
positive slope equation could result in the best node not quite being the start node, but one that 
is very close to it, possibly adjacent. This is why we pick the first one that results in the best 
node being more than 5 blocks away; in testing we found that if the best node is more than 5 
blocks away, it’s probably going to go for as far as it can (probably dozens of blocks), because 
the slope of H(n)+C(n)/x is negative. So basically we are trying to pay attention to cost as much 
as possible, while still making sure that we get at least five blocks, which means that it will 
probably go as far as it can.  



Chart 1, example of graph with positive slope

 
Chart 2, example of graph with negative slope 

 


