
uMMORPG 2D Documentation

(Asset Store) (uMMORPG.net) (Email) (Discord) (FAQ) (Forum) (WebGL)

Getting Started
To see uMMORPG 2D in action, simply open the included scene from uMMORPG/Scenes,
press Play in the Editor and select Server & Play. Run around a bit, kill some monsters,
pick up some new items and try some quests.

Once you have a feeling for it, now it’s time to get some basic project overview and learn
some new stuff. Recommended first steps:

●​ Inspect the Prefabs/Entities/Players prefabs. Take a look at all the components to
see how much you can modify easily, without writing any code.

●​ Look at the Resources/Items folder and play around with the items. You can modify
stats and icons easily without writing any code. Duplicate the Banana and modify it
to be an apple. Then select one of the Item Spawners in the Scene and assign it.

https://www.assetstore.unity3d.com/#!/content/93984
http://ummorpg.net
mailto:info@noobtuts.com
https://discord.gg/2gNKN78
https://ummorpg.net/faq/
http://forum.unity3d.com/threads/ummorpg-official-thread.376636/
https://ummorpg.net/webgl/

●​ Look at the Resources/Skills folder to see the different skill types and how to modify
them.

●​ Inspect the Hierarchy/Scene. Add a Monster by duplicating one, then move it
somewhere else. Move around some of the Environment. Go to
Window->Navigation and rebake the Navmesh afterwards. Monsters need it to
move around.

●​ Read through the UNET manual to understand Unity’s Networking system.
●​ Read the rest of this documentation to understand all the components.

https://docs.unity3d.com/Manual/UNet.html

Recommended Unity Version
Right now, the recommended Unity version is Unity 2018.3.8. You should not use an older
version because Unity is not downwards compatible.

You can use newer versions at your own risk. uMMORPG is a big project that uses a lot of
different Unity features, so whenever Unity introduces a new bug, we feel the effect very
significantly. In theory, any newer Unity version should work fine if (and only if) Unity didn’t
introduce new bugs. That being said, it’s common knowledge that Unity always introduces
new bugs to new versions.

During the past few years working on uMMORPG, the process was to download Unity,
encounter bugs, report them, upgrade Unity to the newer version where the bugs were
fixed, only to encounter new bugs, and so on. It was a never ending cycle of upgrading
headaches, with only the occasional stable version in between.

During GDC 2018, Unity announced the LTS release cycle. LTS stands for long term
support. Unity LTS versions are supported for 2 years and will only receive bug fixes,
without introducing any new features (and hence new bugs).

Words can hardly express how significant LTS versions are for a multiplayer game. You
should absolutely use LTS at all times, otherwise your players will suffer from bugs and all
hell will break loose.​

Changelog
V1.63 [2020-11-19]

●​ Mirror updated to V21.1.0: kcp; other fixes and improvements
●​ NetworkManager: FallbackTransport/TelepathyTransport/ApathyTransport

components replaced by KcpTransport
●​ ProjectSettings: run in window mode by default
●​ Project Settings: force single instance. makes sense for MMOs to make multi clients /

bots more difficult.
●​ UICharacterCreation: remove unnecessary Hide call
●​ fix: removed NetworkBehaviourNonAlloc/ScriptableObjectNonAlloc to fix a bug

where using .name in Awake would lock it to "Name(Clone)"
(https://github.com/vis2k/uMMORPG_CE/issues/17)

●​ fix: Monster.LateUpdate doesn't check IsWorthUpdating anymore. Fixes a bug
where in some cases monster animations would not be shown on the client. see
also: https://github.com/vis2k/uMMORPG_CE/issues/27
https://github.com/vis2k/uMMORPG_CE/issues/28

●​ Entity.IsWorthUpdating simplified. It's a server-only function now because client
should always update all entities.

●​ fix: https://github.com/vis2k/uMMORPG_CE/issues/18 Player.itemCooldowns is now
saved in database so that long cooldowns can't be circumvented by logging out and
back in again.

●​ fix: https://github.com/vis2k/uMMORPG_CE/issues/35 Pet experience syncs to
owner item after gaining exp / level ups, as originally planned in SyncToOwnerItem
comments

●​ perf: Use [SyncVar] NetworkIdentity instead of [SyncVar] GameObject everywhere to
avoid underlying GetComponent calls

●​ perf: PlayerChat.ParsePM doesn't allocate a string[] anymore, returns tuple instead
●​ ScriptableItem/Quest/Skill/Recipe.dict renamed to .All so it's more obvious
●​ fix: Utils.PrettySeconds only uses " " prefix if necessary. Fixes a bug where

PrettySeconds(0.5f) would return " 0.5s" instead of "0.5s"

https://github.com/vis2k/uMMORPG_CE/issues/17
https://github.com/vis2k/uMMORPG_CE/issues/28

Players
The Player prefab(s) can be found in the Prefabs/Entities/Players folder:

Players have several components attached to them, with the ‘Player’ component being the
most important one.

You can modify a whole lot without writing any code, simply browse through the Player
component in the Inspector to get a feel for it.

You can of course add your own components to player prefabs too.

Player Movement
Players move on Unity’s NavMesh with their NavMeshAgent component.

Modifying the Player Sprites

1.​ Drag the prefab into the Scene.
2.​ Replace Sprite Renderer’s sprite with your custom one:

3.​ Open the Animator’s controller:

4.​ Replace the animation clips with the new clips that you created from your new
sprites:

5.​ Apply the changes:

Creating a new Player Prefab
If you want to create another player type, simply drag the existing player prefab into the
scene, modify it to your needs, rename it and then drag it back into the folder to save it as
a different prefab.

Modifying the existing prefab step by step is always a lot easier than creating it all from
scratch again.

Make sure to also drag the new prefab into the NetworkManager’s spawnable prefabs list.
uMMORPG will then automatically display it as another option in the character creation
menu.

Levels

Each player has a maximum level property that you can modify to set the level cap:

Player stats like health, mana, damage, etc. are level based. They start with a base value
and add a bonus for each level:

For example, a level 1 player has 100 health. A level 2 player has 100+10=110 health. A level
3 player has 100+20 =120 health.

Level based stats are a great solution, because they scale with any level cap. If you decide
to raise the level cap from 60 to 70 in your game, then all you have to do is modify the
MaxLevel property. Health, mana, etc. will scale to 70 automatically.

Parties
uMMORPG comes with a party feature, which allows players to form groups and kill
monsters together. Being in a party grants players an experience boost and allows them to
share experience among each other.

A player can invite another player to a party by standing close to the other player, targeting
him and then pressing the Party Invite button in the Target UI:

The party owner can then modify the party settings in the Party UI window.

Guilds
uMMORPG comes with a guild feature.

A player can create a guild by talking to the Npc:

A player can invite another player to a guild by standing close to the other player, targeting
him and then pressing the Guild Invite button in the Target UI:

The guild master can then modify the guild settings in the Guild UI window.

Monsters
The Monsters can be found in Prefabs/Entities/Monsters:

You can modify it to your needs, just like the Player prefab.

There is no complicated spawning system for monsters. Simply drag them into the scene
and position them wherever you want them to live.

Monster Movement
Monsters have a simple AI and they need to be able to navigate around obstacles, for
example to follow a player into a building. This is very difficult to do, but thanks to
Navigation2D, all we have to do is set the Monster’s NavMeshAgent2D.destination
property.

So in other words, Monsters are NavMeshAgents on Unity’s Navmesh. Make sure to rebake
the Navmesh whenever you modify the game world.

Monster Behaviour
Monsters are driven by a Finite State Machine(FSM) in the Monster.cs script. The behaviour
is 100% code, so you’ll have to modify the script if you want to change it.

Note: there’s no easier way to do it with UNET at the moment, and it does work really well too.

Spawn Position
uMMORPG has Spawn and Respawn positions:

Spawn positions are where the player classes spawn after creating their character.

Respawn positions are where the player classes respawn after death.

You can add more Respawn positions by duplicating the existing one, afterwards move it
wherever you want. A player always respawns at the closest respawn position.

Modifying the Environment & Terrain
uMMORPG uses a small and simple scene to display all of the features. You can of course
add any sprites or environment assets that you like. Simply make sure that:

●​ The GameObjects are marked as Static
●​ Go to Window->AI->Navigation2D and rebake the Navmesh each time you modify

the environment. The Monsters and Players need the Navmesh to move.

Skills

Adding a new Skill is very easy. We can right click the Resources/Skills folder in the Project
Area (as seen above) and select Create->uMMORPG Skill to create one of several existing
skill types. Now we rename it to something like “Strong Attack”. Afterwards we can select it
in the Project Area and the modify the skill’s properties in the Inspector. It’s usually a good
idea to find a similar existing skill in the same folder and then copy the properties.

Afterwards we select the player prefab and then drag our new skill into the Skill
Templates list to make sure that the player can learn it.

Note: uMMORPG uses scriptable skills and you can create any new skill type if necessary. Take a
look at Scripts/SkillTemplates to learn how the existing skills were implemented.

Items

Scriptable Items
We already added the most basic items types, so you can simply duplicate existing items to
make similar ones:

●​ You can duplicate and modify the Health Potion to make a Strong Health Potion.
●​ You can duplicate and modify the Sun Bow to make a Crossbow.
●​ You can duplicate and modify the Monster Scroll to make one that spawns a

different Monster.
●​ Etc.

You can also create new Items by right clicking in the Project area to select
Create->uMMORPG Item:

As you can see, there are already different item usage mechanisms. Potions like the Health
Potion will be consumed to increase health and mana. Other items like the Sun Bow do
none of that, but shoot arrows instead. Every MMORPG will need all kinds of different item
usage mechanisms, which is why we implemented Scriptable Items (aka ItemTemplates):

Please take look at the Scripts/ItemTemplate.cs file and the Scripts/ItemTemplates
folder with the currently implemented Scriptable Item types. In most cases, you will want to
inherit from UsableItemTemplate.cs. All you have to do is overwrite the .Use() function (and
a few others depending on your needs) to add any item mechanism that you want. You
could have an item that kills every Monster on the server in .Use() or levels up all guild
members. The possibilities are endless.

To create a new Scriptable Item type, simply create a new Script, inherit from ItemTemplate
(or UsableItemTemplate if it’s supposed to be usable) and then add your logic / properties
as needed. Make sure to add a menu entry like this:

So that you can create an item of that type via right click.

The Item Struct
We just talked about ScriptableItem.cs, which is the true ‘Item’ class in uMMORPG. But
there is also Item.cs - what the hell?

uMMORPG uses UNET’s SyncListStructs for the inventory and the equipment. Those
SyncListStructs only work with structs, so we can’t put ItemTemplate types in there. And
that’s a good thing, here is why:

●​ ItemTemplate has huge amounts of item data like the name, icons, reload times,
etc.

●​ Syncing all that over the Network would require large amounts of bandwidth
●​ Clients already know the ItemTemplates anyway - there’s no point in syncing them

again. All they need to know is which Scriptable Item they need to refer too.
●​ The Item.cs struct is just that. It contains the name (a hash to be exact) to refer to

the ItemTemplate. So all we need are a couple of bytes and the clients know which
ItemTemplate is in which inventory slot, etc.

Note that all ‘dynamic’ Item properties like the pet’s level are also in Item.cs - since two
Items of the same ItemTemplate type might as well have different pet levels.

ItemSlot
There is also the ItemSlot struct, which is just Item + amount. No magic here.

The Inventory and Equipment SyncListStructs work with ItemSlots.

A slot contains a valid .item if the .amount > 0. If .amount == 0 then the .item is invalid and
should not be accessed.

Combining them all
Let’s say you want to add a Strong Health Potion to your game. Here is the step by step
guide:

1.​ Duplicate the HealthPotion ItemTemplate, rename it to Strong Health Potion and
give it an new icon and an increased health reward.

2.​ Now add it to the game world, for example:
a.​ To a Monster’s Drop Chances list
b.​ To an Npc’s Sale Items list
c.​ To a Player’s Default Items list
d.​ To a Player’s Default Equipment list

Now press Play, find your item and use it!

Equipment
2D equipment is simply a sprite that is put on top of the character sprite. Take a look at the
existing sword sprite sheet to see how it consists of additional sword parts on top of the
attack animation.

Make sure that the separate sword slices for each animation frame have the exact same
name as the character slices. So for example, walk_right_0, walk_right_1 etc.

Afterwards drag all the slices into an equipment item’s sprites property:

Quests
uMMORPG comes with a scriptable quest system. Quests can be found in the
Resources/Quests folder:

To add more quests, simply duplicate an existing one and modify it to your needs, or
inherit from ScriptableQuest to add custom requirements.

Afterwards drag it into an Npc’s available quests list:

The quests list has Accept Here and Complete Here properties that should be enabled by
default for the quest to be acceptable and completable at this npc.

Complete Here can be disabled if the quest should be completed by talking to a different
Npc, in which case the other Npc has the same quest entry but with Complete Here
enabled and Accept Here disabled. For an example, please try the Blocked Path quest
ingame.

Crafting
Crafting recipes can be found in the Resources/Recipes folder:

Recipes are very simple. They have a list with ingredients and a result item:

You can craft them ingame by dragging the ingredients into the crafting slots, afterwards
the item that can be crafted will appear:

This system also allows for real recipe items. For example, the Vigor Potion could also
require a secret scroll that players need to find in order to craft it. The scroll can simply be
added as one of the ingredients.

Scenes

First of all, we have to understand that the game server can only handle one Scene right
now, so our whole game world should be in that Scene. If you want to replace the current
Scene, you can either just build on top of it or duplicate it and then modify what you want
to modify.

Note: I created an experimental(!) NetworkZones addon that allows us to use one different scene
per server process, with portals to move between them. The addon is pinned in our Discord
server’s verified channel.

The Database

About SQLITE
uMMORPG uses SQLITE for the database. SQLITE is like MySQL, but all stored in a single
file. There’s no need for a database server or any setup at all, uMMORPG automatically
creates the Database.sqlite file when the server is started.

SQLITE and MySQL are very similar, so you could modify the Database.cs script to work
with MYSQL if needed.

Note that SQLITE is more than capable though. Read the SQLITE Wikipedia entry to
understand why.

How to view and modify the Database
The database can be found in the project folder, it has the name Database.sqlite.

The database structure is very simple, it contains a few tables for characters and accounts.
They can be modified with just about any SQLite browser and we listed several good
options in the comments of the Database script.

Characters can be moved to a different account by simply modifying their ‘account’
property in the database.

A character can be deleted by setting the ‘deleted’ property to 1 and can be restored by
setting it to 0 again. This is very useful in case someone accidentally deleted their character.

https://en.wikipedia.org/wiki/SQLite#History

The User Interface (UI)
uSurvival uses Unity’s new UI system. Please read through the UI manual first:

https://docs.unity3d.com/Manual/UISystem.html

Modifying the UI is very easy. Just modify it in the Scene in 2D view.

Most of the UI elements have UI components attached to them. There is no magic here,
they usually just find the local player and display his stats in a UI element.

Feel free to modify all the UI to your needs.

https://docs.unity3d.com/Manual/UISystem.html

Item Mall

uMMORPG has a built in Item Mall that can be used to sell items for real world money. The
system is very simple to use:

1.​ Set an item’s ItemMallPrice to a value > 0
2.​ Drag it into the Player’s ItemMallCategories property:

3.​ Select the Canvas/ItemMall window and change the Buy Url to the website where
your users should buy item mall coins

4.​ Use your payment callback to add new orders to the database character_orders
table. Orders are processed automatically while the player is logged in.

Note: you can also process new orders manually and add them to the character_orders
table by hand.

5.​ The Item Mall also has a coupons feature. Coupons are validated in
Player.CmdEnterCoupon. You can use whatever algorithm you like to validate a
coupon and then reward the player with item mall coins.

Server Hosting

The Server List
uMMORPG’s NetworkManager has a Server List:

The default entry is for a local server on your own computer, so you can test multiplayer
easily. If you want to host uMMORPG on the internet, you can add another entry here with
some name and the server’s IP. Players can then select it in the Login screen:

Building the Server Binary
UNET puts the server and the client into one project by default, so any build can run as
client or server as necessary. There is no special build process needed.

It’s obviously a bad idea to host the server on a mobile device or in WebGL of course, it
should be a standalone platform like Windows/Mac/Linux with some decent hardware.

The recommended server platform is Linux. Unity can create a headless build of your game
there, so that no rendering happens at all. This is great for performance.

Setting up a Server Machine
Linux is the recommended Server system. If you have no idea how to get started hosting a
UNET game on a Linux system or where and which one to even rent, then please go
through my UNET Server hosting tutorial for a step by step guide and then continue
reading here.

If you already know your way around the Terminal, then use the following commands:

Upload Headless build to home directory:

​ scp /path/to/headless.zip root@1.2.3.4:~/headless.zip

Login via ssh:

​ ssh root@1.2.3.4

Install 32 bit support (just in case), sqlite, unzip:

​ sudo dpkg --add-architecture i386

apt-get update

sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386

sudo apt-get install libsqlite3-0:i386

sudo apt-get install unzip

Unzip the headless build:

unzip headless.zip

Run the server with Log messages shown in the terminal:

./uMMORPG.x86_64 -logfile /dev/stdout

Hiding Server code from the Client
The whole point of UNET was to have all the server and client source code in one project.
This seems counter-intuitive at first, but that’s the part that saves us years of work. Where
we previously needed 50.000 lines of code or more, we only need 5000 lines now because
the server and the client share 90% of it.

The 10% of the code that are only for the server are mostly commands. Reverse
engineering the client could make this code visible to interested eyes, and some developers
are concerned about that.

The first thing to keep in mind is that this does not matter as long as the server validates all
the input correctly. Seeing the source code of a command doesn’t make hacking that much

https://noobtuts.com/unity/unet-server-hosting

easier, since for most commands it’s pretty obvious what the code would do anyway. For
example, the Linux operating system is very secure, even though it’s code is fully open
source.

Furthermore it’s usually a good idea for game developers to spend all of their efforts on the
gameplay to make the best game possible, without worrying about DRM or code
obfuscation too much. That being said, if you still want to hide some of the server’s code
from clients, you could wrap your [Command]s like this:

And then #define SERVER in your code before building your server.

Addon System
uMMORPG comes with a very powerful Addon system that allows you to add functionality
without modifying the core files. It’s also useful to share features with the community.

An example addon script can be found in the Addons folder:

The example script shows you which functions you can use and which classes you can
extend.

Updating
There are a lot more features and improvements planned for uMMORPG. If you want to
update your local version to the latest version, you should keep a few things in mind:

●​ Always make backups before updating. In fact, you should make backups at least
daily so that you can go back through your changes if things go wrong.

●​ uMMORPG comes with 100% of the source code. Updating would be effortless if we
would just ship a DLL file that you can’t modify, but we decided against that. You get
all the code so you can modify it if needed, but always remember: with great power
comes great responsibility. If you modify core code and it stops working or it’s not
compatible with an update,, then you have to fix it yourself.

●​ Try using the Addon system as much as possible, so you don’t have to touch core
code.

●​ You should not update forever. At some point in your development it’s smart to stick
with one version and only manually apply bug fixes afterwards. For example, Valve
didn’t continuously update Counter Strike 1.6 - at some point they only applied fixes
while starting to work on Counter Strike Source with their newest engine.

●​ A local Git repository is a great tool to keep track of your own code changes and of
uMMORPG code changes. Maybe Git Branches are a good idea for you.

	uMMORPG 2D Documentation
	
	Getting Started
	Recommended Unity Version
	Changelog
	Players
	Player Movement
	Modifying the Player Sprites
	
	Creating a new Player Prefab
	Levels
	
	Parties
	
	Guilds

	
	Monsters
	Monster Movement
	Monster Behaviour

	Spawn Position
	
	Modifying the Environment & Terrain
	Skills
	Items
	Scriptable Items
	The Item Struct
	ItemSlot
	Combining them all

	Equipment
	Quests
	Crafting
	Scenes
	The Database
	About SQLITE
	How to view and modify the Database

	
	The User Interface (UI)
	Item Mall
	
	Server Hosting
	The Server List
	Building the Server Binary
	Setting up a Server Machine
	Hiding Server code from the Client

	Addon System
	
	Updating

