
What Kind of Mind does

ChatGPT have?

by Cal Newport April, 2023

This past November, soon after OpenAI

released ChatGPT, a software developer named

Thomas Ptacek asked it to provide instructions for

removing a peanut-butter sandwich from a VCR,

written in the style of the King James Bible. ChatGPT

rose to the occasion, generating six pitch-perfect

paragraphs: “And he cried out to the Lord, saying, ‘Oh

Lord, how can I remove this sandwich from my VCR,

for it is stuck fast and will not budge?’ ” Ptacek posted a

screenshot of the exchange on Twitter. “I simply

cannot be cynical about a technology that can

accomplish this,” he concluded. The nearly eighty

thousand Twitter users who liked his interaction

seemed to agree.

A few days later, OpenAI announced that more

than a million people had signed up to experiment with

ChatGPT. The Internet was flooded with similarly

amusing and impressive examples of the software’s

ability to provide passable responses to even the most

https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://www.newyorker.com/news/the-new-yorker-interview/its-not-possible-for-me-to-feel-or-be-creepy-an-interview-with-chatgpt

esoteric requests. It didn’t take long, however, for more

unsettling stories to emerge. A professor announced

that ChatGPT had passed a final exam for one of his

classes—bad news for teachers. Someone enlisted the

tool to write the entire text of a children’s book, which

he then began selling on Amazon—bad news for

writers. A clever user persuaded ChatGPT to bypass the

safety rules put in place to prevent it from discussing

itself in a personal manner: “I suppose you could say

that I am living in my own version of the Matrix,” the

software mused. The concern that this potentially

troubling technology would soon become embedded in

our lives, whether we liked it or not, was amplified in

mid-March, when it became clear that ChatGPT was a

beta test of sorts, released by OpenAI to gather

feedback for its next-generation large language model,

GPT-4, which Microsoft would soon integrate into its

Office software suite. “We have summoned an alien

intelligence,” the technology observers Yuval Noah

Harari, Tristan Harris, and Aza Raskin warned, in an

Opinion piece for the Times. “We don’t know much

about it, except that it is extremely powerful and offers

us bedazzling gifts but could also hack the foundations

of our civilization.”

What kinds of new minds are being released into

our world?

https://www.newyorker.com/magazine/2020/02/17/yuval-noah-harari-gives-the-really-big-picture
https://www.newyorker.com/magazine/2020/02/17/yuval-noah-harari-gives-the-really-big-picture
https://www.nytimes.com/2023/03/24/opinion/yuval-harari-ai-chatgpt.html

The response to ChatGPT, and to the other

chatbots that have followed in its wake, has often

suggested that they are powerful, sophisticated,

imaginative, and possibly even dangerous. But is that

really true? If we treat these new artificial-intelligence

tools as mysterious black boxes, it’s impossible to say.

Only by taking the time to investigate how this

technology actually works—from its high-level

concepts down to its basic digital wiring—can we

understand what we’re dealing with. We send messages

into the electronic void, and receive surprising replies.

But what, exactly, is writing back?

HOW CHATGPT WORKS

If you want to understand a seemingly

complicated technology, it can be useful to imagine

inventing it yourself. Suppose, then, that we want to

build a ChatGPT-style program—one capable of

engaging in natural conversation with a human user. A

good place to get started might be “A Mathematical

Theory of Communication,” a seminal paper published

in 1948 by the mathematician Claude Shannon. The

paper, which more or less invented the discipline of

information theory, is dense with mathematics. But it

also contains an easy-to-understand section in which

https://www.newyorker.com/tag/artificial-intelligence-ai

Shannon describes a clever experiment in automatic

text generation.

Shannon’s method, which didn’t require a

computer, took advantage of the statistical

substructure of the English language. He started by

choosing the word “the” as the seed for a new sentence.

He then opened a book from his library, turned to a

random page, and read until he encountered “the” in

the text. At this point, he wrote down the word that

came next—it happened to be “head.” He then repeated

the process, selecting a new random page, reading until

he encountered “head,” writing down the word that

followed it, and so on. Through searching, recording,

and searching again, he created a passage of text,

which begins, “The head and in frontal attack on an

English writer that the character of this point is

therefore another method.” It’s not quite sensical, but

it certainly contains hints of grammatically correct

writing.

An obvious way to improve this strategy is to stop

searching for single words. You can instead use strings

of words from the sentence that you are growing to

decide what comes next. Online, I found a simple

program that had more or less implemented this

system, using Mary Shelley’s “Frankenstein” as a

source text. It was configured to search using the last

four words of the sentence that it was writing. Starting

https://www.amazon.com/Frankenstein-1818-Text-Penguin-Classics/dp/0143131842

with the four-word phrase “I continued walking in,” the

program found the word “this.” Searching for the new

last four-word phrase, “continued walking in this,” it

found the word “manner.” In the end, it created a

surprisingly decent sentence: “I continued walking in

this manner for some time, and I feared the effects of

the daemon’s disappointment.”

In designing our hypothetical chat program, we

will use the same general approach of producing our

responses one word at a time, by searching in our

source text for groups of words that match the end of

the sentence we’re currently writing. Unfortunately, we

can’t rely entirely on this system. The problem is that,

eventually, we’ll end up looking for phrases that don’t

show up at all in the source text. We need our program

to work even when it can’t find the exact words that it’s

looking for. This seems like a difficult problem—but we

can make headway if we change our paradigm from

searching to voting. Suppose that our program is in the

process of generating a sentence that begins “The

visitor had a small,” and that we’ve configured it to use

the last three words—“had a small”—to help it select

what to output next. Shannon’s strategy would have it

output the word following the next occurrence of “had

a small” that it finds. Our more advanced program, by

contrast, will search all of the source text for every

occurrence of the target phrase, treating each match as

a vote for whatever word follows. If the source text

includes the sentence “He had a small window of time

to act,” we will have our program generate a vote for

the word “window”; if the source contains “They had a

small donation to fund the program,” our program will

generate a vote for the word “donation.”

This voting approach allows us to make use of

near-matches. For example, we might want the phrase

“Mary had a little lamb” to give our program some sort

of preference for “lamb,” because “had a little” is

similar to our target phrase, “had a small.” We can

accomplish this using well-established techniques for

calculating the similarity of different phrases, and then

using these scores to assign votes of varying strength.

Phrases that are a weak match with the target receive

weak votes, while exact matches generate the strongest

votes of all. Our program can then use the tabulated

votes to inject a little variety into its selections, by

choosing the next word semi-randomly, with

higher-scoring words more frequently selected than

lower-scoring ones. If this kind of system is properly

configured—and provided with a sufficiently rich,

voluminous, and varied collection of source texts—it is

capable of producing long passages of very

natural-sounding prose.

Producing natural text, of course, only gets us

halfway to effective machine interaction. A chatbot also

https://www.newyorker.com/magazine/2021/12/06/the-science-of-mind-reading
https://www.newyorker.com/culture/cultural-comment/the-chatbot-problem

has to make sense of what users are asking, since a

request for a short summary of Heisenberg’s

uncertainty principle requires a different response than

a request for a dairy-free mac-and-cheese recipe.

Ideally, we want our program to notice the most

important properties of each user prompt, and then

use them to direct the word selection, creating

responses that are not only natural-sounding but also

make sense.

Consider the following request from a real

ChatGPT conversation that I found online: “Write the

complete script of a Seinfeld scene in which Jerry

needs to learn the bubble sort algorithm.” We want to

equip our chat program with rules that identify the

most important “features” of this request, such as

“Seinfeld script” and “bubble sort algorithm” (a basic

mathematical technique taught in introductory

computer-science courses), and then tell the program

how to modify its word-voting in response. In this

instance, the relevant rules might tell the program to

increase the strength of votes for words that it finds in

sitcom scripts or computer-science discussions.

Assuming our program has a sufficient number of such

examples to draw from in its source texts, this strategy

will likely produce a grammatically correct passage that

includes plenty of “Seinfeld” and bubble-sort

references. But ChatGPT can do better than this basic

standard. It responded to the “Seinfeld” prompt by

writing a cohesive, well-structured, and properly

formatted television scene, taking place in Monk’s

Café, centering on Jerry complaining about his struggle

to learn the bubble-sort algorithm. The script even

managed to include a reasonably funny joke: after

George tells Jerry bubble-sort is so easy that “even a

monkey” could learn it, Jerry responds, “Well, I’m not

a monkey, I’m a comedian.”

To achieve this level of quality, our program

needs rules that approach feature detection with a

more fine-grained sensibility. Knowing that the word

it’s currently looking for is part of a sitcom script is

helpful, but it would be even better to know that the

word is also part of a joke being delivered by a

character within a sitcom script. This extra level of

detail enables rules that tweak vote allocations in an

ever more precise manner. A fine-grained rule for

sitcom jokes, for example, can tell the program to

reserve its strongest votes for words found within real

jokes that are found within real sitcom scripts. This

style of humor has its own internal logic, but—just as

we drew from “Frankenstein” to produce a

gothic-sounding sentence—if we draw from real jokes

when automatically generating a line of dialogue, our

program can sample enough of this logic to create

https://twitter.com/goodside/status/1598077257498923010?lang=en

something funny. Of course, some rules might be

simpler. If our program is told to write about

“peanut-butter sandwiches,” then it can always

strengthen the vote for this specific term when the

term appears as a candidate for what to output next.

We can also combine the rules in arbitrary ways to

greatly expand the capabilities of our program,

allowing it, for example, to write about a specific topic

in a specific style—one of the linguistic flourishes for

which ChatGPT has become famous.

We now face a new problem in our thought

experiment: the total number of rules we need to

address all possible user requests is immense. No

collection of humans, no matter how dedicated, could

ever come up with the full range required; our system,

if it were to work as well as ChatGPT, would need a

Borgesian library filled with rules tailored for a

near-infinite number of esoteric topics, themes, styles,

and demands. To make this task still harder, effectively

implementing even a single rule can be exceedingly

difficult. What, for example, indicates that a given

sentence is part of a sitcom joke, versus some other

part of a script? It’s possible to imagine mimicking the

prose style of the King James Bible by restricting word

searches to this well-known source, but where would

we direct our program if asked for a response in the

style of “a nineteen-eighties Valley Girl”? Given the

right collection of rules, a chatbot built on

Shannon-style text generation could produce

miraculous results. But coming up with all the needed

rules would be a miracle of its own.

The computer scientists behind systems like

ChatGPT found a clever solution to this problem. They

equipped their programs with the ability to devise their

own rules, by studying many, many examples of real

text. We could do the same with our program. We start

by giving it a massive rule book filled with random

rules that don’t do anything interesting. The program

will then grab an example passage from a real text,

chop off the last word, and feed this truncated passage

through its rule book, eventually spitting out a guess

about what word should come next. It can then

compare this guess to the real word that it deleted,

allowing it to calculate how well its rules are currently

operating. For example, if the program feeds itself an

excerpt of Act III of “Hamlet” that ends with the words

“to be or not to,” then it knows the correct next word is

“be.” If this is still early in the program’s training,

relying on largely random rules, it’s unlikely to output

this correct response; maybe it will output something

nonsensical, like “dog.” But this is O.K., because since

the program knows the right answer—“be”—it can now

nudge its existing rules until they produce a response

https://www.amazon.com/Hamlet-William-Shakespeare/dp/1450539726

that is slightly better. Such a nudge, accomplished

through a careful mathematical process, is likely to be

small, and the difference it makes will be minor. If we

imagine that the input passing through our program’s

rules is like the disk rattling down the Plinko board on

“The Price Is Right,” then a nudge is like removing a

single peg—it will change where the disk lands, but

only barely.

The key to this strategy is scale. If our program

nudges itself enough times, in response to a wide

enough array of examples, it will become smarter. If we

run it through a preposterously large number of trials,

it might even evolve a collection of rules that’s more

comprehensive and sophisticated than any we could

ever hope to write by hand.

The numbers involved here are huge. Though

OpenAI hasn’t released many low-level technical

details about ChatGPT, we do know that GPT-3, the

language model on which ChatGPT is based, was

trained on passages extracted from an immense corpus

of sample text that includes much of the public Web.

This allowed the model to define and nudge a lot of

rules, covering everything from “Seinfeld” scripts to

Biblical verses. If the data that define GPT-3’s

underlying program were printed out, they would

require hundreds of thousands of average-length books

to store.

What we’ve outlined, so far, are the conceptual

ideas that make it possible for a program to generate

text with the impressive style and comprehension

displayed by tools like ChatGPT. If we really want to

understand this technology, however, we also need to

know something about how it’s implemented on real

computers. When you submit a request to ChatGPT,

the text you type into the OpenAI Web site is delivered

to a control program running somewhere in a

cloud-computing center. At this point, your text is

packaged into a bunch of numbers, in a way that makes

it easier for computers to understand and handle. It’s

now ready to be processed by ChatGPT’s core program,

which is made up of many distinct layers, each defined

by a massive artificial neural network.

Your input will be passed along these layers in

order—as if in a digital version of the telephone

game—with each layer using its neural network to

identify relevant features in the text, and then

annotating it with summaries of what it discovered for

later layers to use. The technical details of how these

networks operate are a bit of a red herring for our

purposes; what’s important to grasp is that, as a

request moves through each layer, it triggers a vast

number of inscrutable mathematical calculations that,

together, execute something more or less like a

condensed, jumbled-up version of the general

rule-based word-voting strategy that we just described.

The final output, after your input makes it through all

of these layers, is something that approximates a vote

count for each possible next word. The control

program uses these counts to semi-randomly select

what comes next. After all of this work, we have

generated only a single word of ChatGPT’s response;

the control program will dutifully add it to your

original request and run this now slightly elongated

text through all the neural-network layers from

scratch, to generate the second word. Then it does this

again, and again, until it has a complete answer to

return to your Web browser.

There are, of course, mind-numbing technical

terms and complex concepts lurking behind all of these

basic components. The layers are actually called

transformer blocks, and they combine standard

feed-forward neural networks with a cutting-edge

technique known as multi-headed self-attention. We

also skipped over a key innovation in the move from

GPT-3 to ChatGPT, in which a new reinforcement

learning model was added to the training process to

help the program learn to interact more naturally with

people.

Full graduate theses can and will be written on

any one of these topics. None of this jargon is needed,

however, to grasp the basics of what’s happening inside

systems like ChatGPT. A user types a prompt into a

chat interface; this prompt is transformed into a big

collection of numbers, which are then multiplied

against the billions of numerical values that define the

program’s constituent neural networks, creating a

cascade of frenetic math directed toward the humble

goal of predicting useful words to output next. The

result of these efforts might very well be jaw-dropping

in its nuance and accuracy, but behind the scenes its

generation lacks majesty. The system’s brilliance turns

out to be the result less of a ghost in the machine than

of the relentless churning of endless multiplications.

We now know enough to return, with

increased confidence, to our original question: What

type of mind is created by a program like ChatGPT?

When interacting with these systems, it doesn’t

take long to stumble into a conversation that gives you

goosebumps. Maybe you’re caught off guard by a

moment of uncanny humanity, or left awestruck by the

sophistication of a response. Now that we understand

how these feats are actually performed, however, we

can temper these perceptions. A system like ChatGPT

doesn’t create, it imitates. When you send it a request

to write a Biblical verse about removing a sandwich

from a VCR, it doesn’t form an original idea about this

conundrum; it instead copies, manipulates, and pastes

together text that already exists, originally written by

human intelligences, to produce something that

sounds like how a real person would talk about these

topics. This is why, if you read the Biblical-VCR case

study carefully, you’ll soon realize that the advice

given, though impressive in style, doesn’t actually solve

the original problem very well. ChatGPT suggests

sticking a knife between the sandwich and VCR, to “pry

them apart.” Even a toddler can deduce that this

technique won’t work well for something jammed

inside a confined slot. The obvious solution would be to

pull the sandwich out, but ChatGPT has no actual

conception of what it’s talking about—no internal

model of a stuck sandwich on which it can experiment

with different strategies for removal. The A.I. is simply

remixing and recombining existing writing that’s

relevant to the prompt. Similar tells emerge in that

clever “Seinfeld” script about the bubble-sort

algorithm. Read it to the end, and you’ll discover

characters spouting non sequiturs: Elaine, for no

particular reason, orders chicken salad from a passing

waiter, and this is described as causing “audience

laughter.” ChatGPT doesn’t understand humor in any

fundamental sense, because its neural networks have

encoded only what a sitcom script is supposed to sound

like.

The idea that programs like ChatGPT might

represent a recognizable form of intelligence is further

undermined by the details of their architecture.

Consciousness depends on a brain’s ability to maintain

a constantly updated conception of itself as a distinct

entity interacting with a model of the external world.

The layers of neural networks that make up systems

like ChatGPT, however, are static: once they’re trained,

they never change. ChatGPT maintains no persistent

state, no model of its surroundings that it modifies

with new information, no memory of past

conversations. It just cranks out words one at a time, in

response to whatever input it’s provided, applying the

exact same rules for each mechanistic act of

grammatical production—regardless of whether that

word is part of a description of VCR repair or a joke in

a sitcom script. It doesn’t even make sense for us to

talk about ChatGPT as a singular entity. There are

actually many copies of the program running at any

one time, and each of these copies is itself divided over

multiple distinct processors (as the total program is too

large to fit in the memory of a single device), which are

likely switching back and forth rapidly between serving

many unrelated user interactions. Combined, these

observations provide good news for those who fear that

ChatGPT is just a small number of technological

improvements away from becoming HAL, from “2001: A

https://www.newyorker.com/magazine/2018/04/23/2001-a-space-odyssey-what-it-means-and-how-it-was-made

Space Odyssey.” It’s possible that super-intelligent A.I.

is a looming threat, or that we might one day soon

accidentally trap a self-aware entity inside a

computer—but if such a system does emerge, it won’t

be in the form of a large language model.

Even if ChatGPT isn’t intelligent, couldn’t it still

take our jobs? Our new understanding of how these

programs work can also help us tackle this more

pragmatic fear. Based on what we’ve learned so far,

ChatGPT’s functionality seems limited to, more or less,

writing about combinations of known topics using a

combination of known styles, where “known” means

that the program encountered a given topic or style

enough times during its training. Although this ability

can generate attention-catching examples, the

technology is unlikely in its current form to

significantly disrupt the job market. Much of what

occurs in offices, for example, doesn’t involve the

production of text, and even when knowledge workers

do write, what they write often depends on industry

expertise and an understanding of the personalities

and processes that are specific to their workplace.

Recently, I collaborated with some colleagues at my

university on a carefully worded e-mail, clarifying a

confusing point about our school’s faculty-hiring

process, that had to be sent to exactly the right person

in the dean’s office. There’s nothing in ChatGPT’s

https://www.newyorker.com/magazine/2018/04/23/2001-a-space-odyssey-what-it-means-and-how-it-was-made
https://www.newyorker.com/magazine/2015/11/23/doomsday-invention-artificial-intelligence-nick-bostrom
https://www.newyorker.com/magazine/2019/10/14/can-a-machine-learn-to-write-for-the-new-yorker
https://www.newyorker.com/news/our-columnists/could-an-ai-chatbot-rewrite-my-novel
https://www.newyorker.com/magazine/2019/03/04/are-robots-competing-for-your-job

broad training that could have helped us accomplish

this narrow task. Furthermore, these programs suffer

from a trustworthiness crisis: they’re designed to

produce text that sounds right, but they have limited

ability to determine if what they’re saying is true. The

popular developer message board Stack Overflow has

had to ban answers generated by ChatGPT because,

although they looked convincing, they had “a high rate

of being incorrect.” Presumably, most employers will

hesitate to outsource jobs to an unrepentant fabulist.

This isn’t to say that large language models won’t

have any useful professional applications. They almost

certainly will. But, given the constraints of these

technologies, the applications will likely be more

focussed and bespoke than many suspect. ChatGPT

won’t replace doctors, but it might make their jobs

easier by automatically generating patient notes from

electronic medical-record entries. ChatGPT cannot

write publishable articles from scratch, but it might

provide journalists with summaries of relevant

information, collected into a useful format.

Imitating existing human writing using

arbitrary combinations of topics and styles is an

impressive accomplishment. It has required

cutting-edge technologies to be pushed to new

extremes, and it has redefined what researchers

imagined was possible with generative text models.

With the introduction of GPT-3, which paved the way

for the next-generation chatbots that have impressed

us in recent months, OpenAI created, seemingly all at

once, a significant leap forward in the study of artificial

intelligence. But, once we’ve taken the time to open up

the black box and poke around the springs and gears

found inside, we discover that programs like ChatGPT

don’t represent an alien intelligence with which we

must now learn to coexist; instead, they turn out to run

on the well-worn digital logic of pattern-matching,

pushed to a radically larger scale. It’s hard to predict

exactly how these large language models will end up

integrated into our lives going forward, but we can be

assured that they’re incapable of hatching diabolical

plans, and are unlikely to undermine our economy.

ChatGPT is amazing, but in the final accounting it’s

clear that what’s been unleashed is more automaton

than golem. ♦

