What Kind of Mind does
ChatGPT have?

by Cal Newport April, 2023

This past November, soon after OpenAl
released ChatGPT, a software developer named
Thomas Ptacek asked it to provide instructions for
removing a peanut-butter sandwich from a VCR,
written in the style of the King James Bible. ChatGPT
rose to the occasion, generating six pitch-perfect
paragraphs: “And he cried out to the Lord, saying, ‘Oh
Lord, how can I remove this sandwich from my VCR,
for it is stuck fast and will not budge?’ ” Ptacek posted a
screenshot of the exchange on Twitter. “I simply
cannot be cynical about a technology that can
accomplish this,” he concluded. The nearly eighty
thousand Twitter users who liked his interaction
seemed to agree.

A few days later, OpenAl announced that more
than a million people had signed up to experiment with
ChatGPT. The Internet was flooded with similarly

amusing and impressive examples of the software’s
ability to provide passable responses to even the most


https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
https://www.newyorker.com/news/the-new-yorker-interview/its-not-possible-for-me-to-feel-or-be-creepy-an-interview-with-chatgpt

esoteric requests. It didn’t take long, however, for more
unsettling stories to emerge. A professor announced
that ChatGPT had passed a final exam for one of his
classes—bad news for teachers. Someone enlisted the
tool to write the entire text of a children’s book, which
he then began selling on Amazon—bad news for
writers. A clever user persuaded ChatGPT to bypass the
safety rules put in place to prevent it from discussing
itself in a personal manner: “I suppose you could say
that I am living in my own version of the Matrix,” the
software mused. The concern that this potentially
troubling technology would soon become embedded in
our lives, whether we liked it or not, was amplified in
mid-March, when it became clear that ChatGPT was a
beta test of sorts, released by OpenAl to gather
feedback for its next-generation large language model,
GPT-4, which Microsoft would soon integrate into its
Office software suite. “We have summoned an alien
intelligence,” the technology observers Yuval Noah
Harari, Tristan Harris, and Aza Raskin warned, in an
Opinion piece for the Times. “We don’t know much
about it, except that it is extremely powerful and offers
us bedazzling gifts but could also hack the foundations
of our civilization.”

What kinds of new minds are being released into

our world?


https://www.newyorker.com/magazine/2020/02/17/yuval-noah-harari-gives-the-really-big-picture
https://www.newyorker.com/magazine/2020/02/17/yuval-noah-harari-gives-the-really-big-picture
https://www.nytimes.com/2023/03/24/opinion/yuval-harari-ai-chatgpt.html

The response to ChatGPT, and to the other
chatbots that have followed in its wake, has often
suggested that they are powerful, sophisticated,
imaginative, and possibly even dangerous. But is that
really true? If we treat these new artificial-intelligence
tools as mysterious black boxes, it’s impossible to say.
Only by taking the time to investigate how this
technology actually works—from its high-level
concepts down to its basic digital wiring—can we
understand what we’re dealing with. We send messages
into the electronic void, and receive surprising replies.

But what, exactly, is writing back?

HOW CHATGPT WORKS

If you want to understand a seemingly
complicated technology, it can be useful to imagine
inventing it yourself. Suppose, then, that we want to
build a ChatGPT-style program—one capable of
engaging in natural conversation with a human user. A
good place to get started might be “A Mathematical
Theory of Communication,” a seminal paper published
in 1948 by the mathematician Claude Shannon. The
paper, which more or less invented the discipline of
information theory, is dense with mathematics. But it

also contains an easy-to-understand section in which


https://www.newyorker.com/tag/artificial-intelligence-ai

Shannon describes a clever experiment in automatic
text generation.

Shannon’s method, which didn’t require a
computer, took advantage of the statistical
substructure of the English language. He started by
choosing the word “the” as the seed for a new sentence.
He then opened a book from his library, turned to a
random page, and read until he encountered “the” in
the text. At this point, he wrote down the word that
came next—it happened to be “head.” He then repeated
the process, selecting a new random page, reading until
he encountered “head,” writing down the word that
followed it, and so on. Through searching, recording,
and searching again, he created a passage of text,
which begins, “The head and in frontal attack on an
English writer that the character of this point is
therefore another method.” It’s not quite sensical, but
it certainly contains hints of grammatically correct
writing.

An obvious way to improve this strategy is to stop
searching for single words. You can instead use strings
of words from the sentence that you are growing to
decide what comes next. Online, I found a simple
program that had more or less implemented this

system, using Mary Shelley’s “Frankenstein” as a

source text. It was configured to search using the last

four words of the sentence that it was writing. Starting


https://www.amazon.com/Frankenstein-1818-Text-Penguin-Classics/dp/0143131842

with the four-word phrase “I continued walking in,” the
program found the word “this.” Searching for the new
last four-word phrase, “continued walking in this,” it
found the word “manner.” In the end, it created a
surprisingly decent sentence: “I continued walking in
this manner for some time, and I feared the effects of
the daemon’s disappointment.”

In designing our hypothetical chat program, we
will use the same general approach of producing our
responses one word at a time, by searching in our
source text for groups of words that match the end of
the sentence we’re currently writing. Unfortunately, we
can’t rely entirely on this system. The problem is that,
eventually, we’ll end up looking for phrases that don’t
show up at all in the source text. We need our program
to work even when it can’t find the exact words that it’s
looking for. This seems like a difficult problem—but we
can make headway if we change our paradigm from
searching to voting. Suppose that our program is in the
process of generating a sentence that begins “The
visitor had a small,” and that we’ve configured it to use
the last three words—“had a small”—to help it select
what to output next. Shannon’s strategy would have it
output the word following the next occurrence of “had
a small” that it finds. Our more advanced program, by
contrast, will search all of the source text for every

occurrence of the target phrase, treating each match as



a vote for whatever word follows. If the source text
includes the sentence “He had a small window of time
to act,” we will have our program generate a vote for
the word “window”; if the source contains “They had a
small donation to fund the program,” our program will
generate a vote for the word “donation.”

This voting approach allows us to make use of
near-matches. For example, we might want the phrase
“Mary had a little lamb” to give our program some sort
of preference for “lamb,” because “had a little” is
similar to our target phrase, “had a small.” We can
accomplish this using well-established techniques for
calculating the similarity of different phrases, and then
using these scores to assign votes of varying strength.
Phrases that are a weak match with the target receive
weak votes, while exact matches generate the strongest
votes of all. Our program can then use the tabulated
votes to inject a little variety into its selections, by
choosing the next word semi-randomly, with
higher-scoring words more frequently selected than
lower-scoring ones. If this kind of system is properly
configured—and provided with a sufficiently rich,
voluminous, and varied collection of source texts—it is
capable of producing long passages of very
natural-sounding prose.

Producing natural text, of course, only gets us

halfway to effective machine interaction. A chatbot also


https://www.newyorker.com/magazine/2021/12/06/the-science-of-mind-reading
https://www.newyorker.com/culture/cultural-comment/the-chatbot-problem

has to make sense of what users are asking, since a
request for a short summary of Heisenberg’s
uncertainty principle requires a different response than
a request for a dairy-free mac-and-cheese recipe.
Ideally, we want our program to notice the most
important properties of each user prompt, and then
use them to direct the word selection, creating
responses that are not only natural-sounding but also

make sense.

Consider the following request from a real
ChatGPT conversation that I found online: “Write the
complete script of a Seinfeld scene in which Jerry
needs to learn the bubble sort algorithm.” We want to
equip our chat program with rules that identify the
most important “features” of this request, such as
“Seinfeld script” and “bubble sort algorithm” (a basic
mathematical technique taught in introductory
computer-science courses), and then tell the program
how to modify its word-voting in response. In this
instance, the relevant rules might tell the program to
increase the strength of votes for words that it finds in
sitcom scripts or computer-science discussions.
Assuming our program has a sufficient number of such
examples to draw from in its source texts, this strategy
will likely produce a grammatically correct passage that

includes plenty of “Seinfeld” and bubble-sort



references. But ChatGPT can do better than this basic
standard. It responded to the “Seinfeld” prompt by
writing a cohesive, well-structured, and properly
formatted television scene, taking place in Monk’s
Café, centering on Jerry complaining about his struggle
to learn the bubble-sort algorithm. The script even
managed to include a reasonably funny joke: after
George tells Jerry bubble-sort is so easy that “even a
monkey” could learn it, Jerry responds, “Well, I'm not
a monkey, I'm a comedian.”

To achieve this level of quality, our program
needs rules that approach feature detection with a
more fine-grained sensibility. Knowing that the word
it’s currently looking for is part of a sitcom script is
helpful, but it would be even better to know that the
word is also part of a joke being delivered by a
character within a sitcom script. This extra level of
detail enables rules that tweak vote allocations in an
ever more precise manner. A fine-grained rule for
sitcom jokes, for example, can tell the program to
reserve its strongest votes for words found within real
jokes that are found within real sitcom scripts. This
style of humor has its own internal logic, but—just as
we drew from “Frankenstein” to produce a
gothic-sounding sentence—if we draw from real jokes
when automatically generating a line of dialogue, our

program can sample enough of this logic to create


https://twitter.com/goodside/status/1598077257498923010?lang=en

something funny. Of course, some rules might be
simpler. If our program is told to write about
“peanut-butter sandwiches,” then it can always
strengthen the vote for this specific term when the
term appears as a candidate for what to output next.
We can also combine the rules in arbitrary ways to
greatly expand the capabilities of our program,
allowing it, for example, to write about a specific topic
in a specific style—one of the linguistic flourishes for
which ChatGPT has become famous.

We now face a new problem in our thought
experiment: the total number of rules we need to
address all possible user requests is immense. No
collection of humans, no matter how dedicated, could
ever come up with the full range required; our system,
if it were to work as well as ChatGPT, would need a
Borgesian library filled with rules tailored for a
near-infinite number of esoteric topics, themes, styles,
and demands. To make this task still harder, effectively
implementing even a single rule can be exceedingly
difficult. What, for example, indicates that a given
sentence is part of a sitcom joke, versus some other
part of a script? It’s possible to imagine mimicking the
prose style of the King James Bible by restricting word
searches to this well-known source, but where would

we direct our program if asked for a response in the



style of “a nineteen-eighties Valley Girl”? Given the
right collection of rules, a chatbot built on
Shannon-style text generation could produce
miraculous results. But coming up with all the needed
rules would be a miracle of its own.

The computer scientists behind systems like
ChatGPT found a clever solution to this problem. They
equipped their programs with the ability to devise their
own rules, by studying many, many examples of real
text. We could do the same with our program. We start
by giving it a massive rule book filled with random
rules that don’t do anything interesting. The program
will then grab an example passage from a real text,
chop off the last word, and feed this truncated passage
through its rule book, eventually spitting out a guess
about what word should come next. It can then
compare this guess to the real word that it deleted,
allowing it to calculate how well its rules are currently
operating. For example, if the program feeds itself an
excerpt of Act IIT of “Hamlet” that ends with the words
“to be or not to,” then it knows the correct next word is
“be.” If this is still early in the program’s training,
relying on largely random rules, it’s unlikely to output
this correct response; maybe it will output something
nonsensical, like “dog.” But this is O.K., because since
the program knows the right answer—“be”—it can now

nudge its existing rules until they produce a response


https://www.amazon.com/Hamlet-William-Shakespeare/dp/1450539726

that is slightly better. Such a nudge, accomplished
through a careful mathematical process, is likely to be
small, and the difference it makes will be minor. If we
imagine that the input passing through our program’s
rules is like the disk rattling down the Plinko board on
“The Price Is Right,” then a nudge is like removing a
single peg—it will change where the disk lands, but
only barely.

The key to this strategy is scale. If our program
nudges itself enough times, in response to a wide
enough array of examples, it will become smarter. If we
run it through a preposterously large number of trials,
it might even evolve a collection of rules that’s more
comprehensive and sophisticated than any we could
ever hope to write by hand.

The numbers involved here are huge. Though
OpenAl hasn’t released many low-level technical
details about ChatGPT, we do know that GPT-3, the
language model on which ChatGPT is based, was
trained on passages extracted from an immense corpus
of sample text that includes much of the public Web.
This allowed the model to define and nudge a lot of
rules, covering everything from “Seinfeld” scripts to
Biblical verses. If the data that define GPT-3’s
underlying program were printed out, they would
require hundreds of thousands of average-length books

to store.



What we’ve outlined, so far, are the conceptual
ideas that make it possible for a program to generate
text with the impressive style and comprehension
displayed by tools like ChatGPT. If we really want to
understand this technology, however, we also need to
know something about how it’s implemented on real
computers. When you submit a request to ChatGPT,
the text you type into the OpenAl Web site is delivered
to a control program running somewhere in a
cloud-computing center. At this point, your text is
packaged into a bunch of numbers, in a way that makes
it easier for computers to understand and handle. It’s
now ready to be processed by ChatGPT’s core program,
which is made up of many distinct layers, each defined
by a massive artificial neural network.

Your input will be passed along these layers in
order—as if in a digital version of the telephone
game—with each layer using its neural network to
identify relevant features in the text, and then
annotating it with summaries of what it discovered for
later layers to use. The technical details of how these
networks operate are a bit of a red herring for our
purposes; what’s important to grasp is that, as a
request moves through each layer, it triggers a vast
number of inscrutable mathematical calculations that,
together, execute something more or less like a

condensed, jumbled-up version of the general



rule-based word-voting strategy that we just described.
The final output, after your input makes it through all
of these layers, is something that approximates a vote
count for each possible next word. The control
program uses these counts to semi-randomly select
what comes next. After all of this work, we have
generated only a single word of ChatGPT’s response;
the control program will dutifully add it to your
original request and run this now slightly elongated
text through all the neural-network layers from
scratch, to generate the second word. Then it does this
again, and again, until it has a complete answer to
return to your Web browser.

There are, of course, mind-numbing technical
terms and complex concepts lurking behind all of these
basic components. The layers are actually called
transformer blocks, and they combine standard
feed-forward neural networks with a cutting-edge
technique known as multi-headed self-attention. We
also skipped over a key innovation in the move from
GPT-3 to ChatGPT, in which a new reinforcement
learning model was added to the training process to
help the program learn to interact more naturally with
people.

Full graduate theses can and will be written on
any one of these topics. None of this jargon is needed,

however, to grasp the basics of what’s happening inside



systems like ChatGPT. A user types a prompt into a
chat interface; this prompt is transformed into a big
collection of numbers, which are then multiplied
against the billions of numerical values that define the
program’s constituent neural networks, creating a
cascade of frenetic math directed toward the humble
goal of predicting useful words to output next. The
result of these efforts might very well be jaw-dropping
in its nuance and accuracy, but behind the scenes its
generation lacks majesty. The system’s brilliance turns
out to be the result less of a ghost in the machine than

of the relentless churning of endless multiplications.

We now know enough to return, with
increased confidence, to our original question: What
type of mind is created by a program like ChatGPT?

When interacting with these systems, it doesn’t
take long to stumble into a conversation that gives you
goosebumps. Maybe you’re caught off guard by a
moment of uncanny humanity, or left awestruck by the
sophistication of a response. Now that we understand
how these feats are actually performed, however, we
can temper these perceptions. A system like ChatGPT
doesn’t create, it imitates. When you send it a request
to write a Biblical verse about removing a sandwich
from a VCR, it doesn’t form an original idea about this

conundrum,; it instead copies, manipulates, and pastes



together text that already exists, originally written by
human intelligences, to produce something that
sounds like how a real person would talk about these
topics. This is why, if you read the Biblical-VCR case
study carefully, you’ll soon realize that the advice
given, though impressive in style, doesn’t actually solve
the original problem very well. ChatGPT suggests
sticking a knife between the sandwich and VCR, to “pry
them apart.” Even a toddler can deduce that this
technique won’t work well for something jammed
inside a confined slot. The obvious solution would be to
pull the sandwich out, but ChatGPT has no actual
conception of what it’s talking about—no internal
model of a stuck sandwich on which it can experiment
with different strategies for removal. The A.I. is simply
remixing and recombining existing writing that’s
relevant to the prompt. Similar tells emerge in that
clever “Seinfeld” script about the bubble-sort
algorithm. Read it to the end, and you’ll discover
characters spouting non sequiturs: Elaine, for no
particular reason, orders chicken salad from a passing
waiter, and this is described as causing “audience
laughter.” ChatGPT doesn’t understand humor in any
fundamental sense, because its neural networks have

encoded only what a sitcom script is supposed to sound
like.



The idea that programs like ChatGPT might
represent a recognizable form of intelligence is further
undermined by the details of their architecture.
Consciousness depends on a brain’s ability to maintain
a constantly updated conception of itself as a distinct
entity interacting with a model of the external world.
The layers of neural networks that make up systems
like ChatGPT, however, are static: once they're trained,
they never change. ChatGPT maintains no persistent
state, no model of its surroundings that it modifies
with new information, no memory of past
conversations. It just cranks out words one at a time, in
response to whatever input it’s provided, applying the
exact same rules for each mechanistic act of
grammatical production—regardless of whether that
word is part of a description of VCR repair or a joke in
a sitcom script. It doesn’t even make sense for us to
talk about ChatGPT as a singular entity. There are
actually many copies of the program running at any
one time, and each of these copies is itself divided over
multiple distinct processors (as the total program is too
large to fit in the memory of a single device), which are
likely switching back and forth rapidly between serving
many unrelated user interactions. Combined, these
observations provide good news for those who fear that
ChatGPT is just a small number of technological

improvements away from becoming HaL, from “2001: A


https://www.newyorker.com/magazine/2018/04/23/2001-a-space-odyssey-what-it-means-and-how-it-was-made

Space Odyssey.” It’s possible that super-intelligent A.I.

is a looming threat, or that we might one day soon
accidentally trap a self-aware entity inside a
computer—but if such a system does emerge, it won’t
be in the form of a large language model.

Even if ChatGPT isn’t intelligent, couldn’t it still
take our jobs? Our new understanding of how these
programs work can also help us tackle this more
pragmatic fear. Based on what we’ve learned so far,
ChatGPT’s functionality seems limited to, more or less,
writing about combinations of known topics using a
combination of known styles, where “known” means
that the program encountered a given topic or style
enough times during its training. Although this ability
can generate attention-catching examples, the
technology is unlikely in its current form to
significantly disrupt the job market. Much of what
occurs in offices, for example, doesn’t involve the
production of text, and even when knowledge workers
do write, what they write often depends on industry
expertise and an understanding of the personalities
and processes that are specific to their workplace.
Recently, I collaborated with some colleagues at my
university on a carefully worded e-mail, clarifying a
confusing point about our school’s faculty-hiring
process, that had to be sent to exactly the right person
in the dean’s office. There’s nothing in ChatGPT’s


https://www.newyorker.com/magazine/2018/04/23/2001-a-space-odyssey-what-it-means-and-how-it-was-made
https://www.newyorker.com/magazine/2015/11/23/doomsday-invention-artificial-intelligence-nick-bostrom
https://www.newyorker.com/magazine/2019/10/14/can-a-machine-learn-to-write-for-the-new-yorker
https://www.newyorker.com/news/our-columnists/could-an-ai-chatbot-rewrite-my-novel
https://www.newyorker.com/magazine/2019/03/04/are-robots-competing-for-your-job

broad training that could have helped us accomplish
this narrow task. Furthermore, these programs suffer
from a trustworthiness crisis: they’re designed to
produce text that sounds right, but they have limited
ability to determine if what they’re saying is true. The
popular developer message board Stack Overflow has
had to ban answers generated by ChatGPT because,
although they looked convincing, they had “a high rate
of being incorrect.” Presumably, most employers will
hesitate to outsource jobs to an unrepentant fabulist.
This isn’t to say that large language models won’t
have any useful professional applications. They almost
certainly will. But, given the constraints of these
technologies, the applications will likely be more
focussed and bespoke than many suspect. ChatGPT
won’t replace doctors, but it might make their jobs
easier by automatically generating patient notes from
electronic medical-record entries. ChatGPT cannot
write publishable articles from scratch, but it might
provide journalists with summaries of relevant

information, collected into a useful format.

Imitating existing human writing using
arbitrary combinations of topics and styles is an
impressive accomplishment. It has required
cutting-edge technologies to be pushed to new

extremes, and it has redefined what researchers



imagined was possible with generative text models.
With the introduction of GPT-3, which paved the way
for the next-generation chatbots that have impressed
us in recent months, OpenAl created, seemingly all at
once, a significant leap forward in the study of artificial
intelligence. But, once we’ve taken the time to open up
the black box and poke around the springs and gears
found inside, we discover that programs like ChatGPT
don’t represent an alien intelligence with which we
must now learn to coexist; instead, they turn out to run
on the well-worn digital logic of pattern-matching,
pushed to a radically larger scale. It’s hard to predict
exactly how these large language models will end up
integrated into our lives going forward, but we can be
assured that they’re incapable of hatching diabolical
plans, and are unlikely to undermine our economy.
ChatGPT is amazing, but in the final accounting it’s
clear that what’s been unleashed is more automaton

than golem. ¢



