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This past November, soon after OpenAI 

released ChatGPT, a software developer named 

Thomas Ptacek asked it to provide instructions for 

removing a peanut-butter sandwich from a VCR, 

written in the style of the King James Bible. ChatGPT 

rose to the occasion, generating six pitch-perfect 

paragraphs: “And he cried out to the Lord, saying, ‘Oh 

Lord, how can I remove this sandwich from my VCR, 

for it is stuck fast and will not budge?’ ” Ptacek posted a 

screenshot of the exchange on Twitter. “I simply 

cannot be cynical about a technology that can 

accomplish this,” he concluded. The nearly eighty 

thousand Twitter users who liked his interaction 

seemed to agree. 

A few days later, OpenAI announced that more 

than a million people had signed up to experiment with 

ChatGPT. The Internet was flooded with similarly 

amusing and impressive examples of the software’s 

ability to provide passable responses to even the most 
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esoteric requests. It didn’t take long, however, for more 

unsettling stories to emerge. A professor announced 

that ChatGPT had passed a final exam for one of his 

classes—bad news for teachers. Someone enlisted the 

tool to write the entire text of a children’s book, which 

he then began selling on Amazon—bad news for 

writers. A clever user persuaded ChatGPT to bypass the 

safety rules put in place to prevent it from discussing 

itself in a personal manner: “I suppose you could say 

that I am living in my own version of the Matrix,” the 

software mused. The concern that this potentially 

troubling technology would soon become embedded in 

our lives, whether we liked it or not, was amplified in 

mid-March, when it became clear that ChatGPT was a 

beta test of sorts, released by OpenAI to gather 

feedback for its next-generation large language model, 

GPT-4, which Microsoft would soon integrate into its 

Office software suite. “We have summoned an alien 

intelligence,” the technology observers Yuval Noah 

Harari, Tristan Harris, and Aza Raskin warned, in an 

Opinion piece for the Times. “We don’t know much 

about it, except that it is extremely powerful and offers 

us bedazzling gifts but could also hack the foundations 

of our civilization.” 

What kinds of new minds are being released into 

our world?  
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The response to ChatGPT, and to the other 

chatbots that have followed in its wake, has often 

suggested that they are powerful, sophisticated, 

imaginative, and possibly even dangerous. But is that 

really true? If we treat these new artificial-intelligence 

tools as mysterious black boxes, it’s impossible to say. 

Only by taking the time to investigate how this 

technology actually works—from its high-level 

concepts down to its basic digital wiring—can we 

understand what we’re dealing with. We send messages 

into the electronic void, and receive surprising replies. 

But what, exactly, is writing back? 

 

HOW CHATGPT WORKS 

 

If you want to understand a seemingly 

complicated technology, it can be useful to imagine 

inventing it yourself. Suppose, then, that we want to 

build a ChatGPT-style program—one capable of 

engaging in natural conversation with a human user. A 

good place to get started might be “A Mathematical 

Theory of Communication,” a seminal paper published 

in 1948 by the mathematician Claude Shannon. The 

paper, which more or less invented the discipline of 

information theory, is dense with mathematics. But it 

also contains an easy-to-understand section in which 

https://www.newyorker.com/tag/artificial-intelligence-ai


Shannon describes a clever experiment in automatic 

text generation. 

Shannon’s method, which didn’t require a 

computer, took advantage of the statistical 

substructure of the English language. He started by 

choosing the word “the” as the seed for a new sentence. 

He then opened a book from his library, turned to a 

random page, and read until he encountered “the” in 

the text. At this point, he wrote down the word that 

came next—it happened to be “head.” He then repeated 

the process, selecting a new random page, reading until 

he encountered “head,” writing down the word that 

followed it, and so on. Through searching, recording, 

and searching again, he created a passage of text, 

which begins, “The head and in frontal attack on an 

English writer that the character of this point is 

therefore another method.” It’s not quite sensical, but 

it certainly contains hints of grammatically correct 

writing. 

An obvious way to improve this strategy is to stop 

searching for single words. You can instead use strings 

of words from the sentence that you are growing to 

decide what comes next. Online, I found a simple 

program that had more or less implemented this 

system, using Mary Shelley’s “Frankenstein” as a 

source text. It was configured to search using the last 

four words of the sentence that it was writing. Starting 

https://www.amazon.com/Frankenstein-1818-Text-Penguin-Classics/dp/0143131842


with the four-word phrase “I continued walking in,” the 

program found the word “this.” Searching for the new 

last four-word phrase, “continued walking in this,” it 

found the word “manner.” In the end, it created a 

surprisingly decent sentence: “I continued walking in 

this manner for some time, and I feared the effects of 

the daemon’s disappointment.” 

In designing our hypothetical chat program, we 

will use the same general approach of producing our 

responses one word at a time, by searching in our 

source text for groups of words that match the end of 

the sentence we’re currently writing. Unfortunately, we 

can’t rely entirely on this system. The problem is that, 

eventually, we’ll end up looking for phrases that don’t 

show up at all in the source text. We need our program 

to work even when it can’t find the exact words that it’s 

looking for. This seems like a difficult problem—but we 

can make headway if we change our paradigm from 

searching to voting. Suppose that our program is in the 

process of generating a sentence that begins “The 

visitor had a small,” and that we’ve configured it to use 

the last three words—“had a small”—to help it select 

what to output next. Shannon’s strategy would have it 

output the word following the next occurrence of “had 

a small” that it finds. Our more advanced program, by 

contrast, will search all of the source text for every 

occurrence of the target phrase, treating each match as 



a vote for whatever word follows. If the source text 

includes the sentence “He had a small window of time 

to act,” we will have our program generate a vote for 

the word “window”; if the source contains “They had a 

small donation to fund the program,” our program will 

generate a vote for the word “donation.” 

This voting approach allows us to make use of 

near-matches. For example, we might want the phrase 

“Mary had a little lamb” to give our program some sort 

of preference for “lamb,” because “had a little” is 

similar to our target phrase, “had a small.” We can 

accomplish this using well-established techniques for 

calculating the similarity of different phrases, and then 

using these scores to assign votes of varying strength. 

Phrases that are a weak match with the target receive 

weak votes, while exact matches generate the strongest 

votes of all. Our program can then use the tabulated 

votes to inject a little variety into its selections, by 

choosing the next word semi-randomly, with 

higher-scoring words more frequently selected than 

lower-scoring ones. If this kind of system is properly 

configured—and provided with a sufficiently rich, 

voluminous, and varied collection of source texts—it is 

capable of producing long passages of very 

natural-sounding prose. 

Producing natural text, of course, only gets us 

halfway to effective machine interaction. A chatbot also 
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has to make sense of what users are asking, since a 

request for a short summary of Heisenberg’s 

uncertainty principle requires a different response than 

a request for a dairy-free mac-and-cheese recipe. 

Ideally, we want our program to notice the most 

important properties of each user prompt, and then 

use them to direct the word selection, creating 

responses that are not only natural-sounding but also 

make sense. 

 

Consider the following request from a real 

ChatGPT conversation that I found online: “Write the 

complete script of a Seinfeld scene in which Jerry 

needs to learn the bubble sort algorithm.” We want to 

equip our chat program with rules that identify the 

most important “features” of this request, such as 

“Seinfeld script” and “bubble sort algorithm” (a basic 

mathematical technique taught in introductory 

computer-science courses), and then tell the program 

how to modify its word-voting in response. In this 

instance, the relevant rules might tell the program to 

increase the strength of votes for words that it finds in 

sitcom scripts or computer-science discussions. 

Assuming our program has a sufficient number of such 

examples to draw from in its source texts, this strategy 

will likely produce a grammatically correct passage that 

includes plenty of “Seinfeld” and bubble-sort 



references. But ChatGPT can do better than this basic 

standard. It responded to the “Seinfeld” prompt by 

writing a cohesive, well-structured, and properly 

formatted television scene, taking place in Monk’s 

Café, centering on Jerry complaining about his struggle 

to learn the bubble-sort algorithm. The script even 

managed to include a reasonably funny joke: after 

George tells Jerry bubble-sort is so easy that “even a 

monkey” could learn it, Jerry responds, “Well, I’m not 

a monkey, I’m a comedian.” 

To achieve this level of quality, our program 

needs rules that approach feature detection with a 

more fine-grained sensibility. Knowing that the word 

it’s currently looking for is part of a sitcom script is 

helpful, but it would be even better to know that the 

word is also part of a joke being delivered by a 

character within a sitcom script. This extra level of 

detail enables rules that tweak vote allocations in an 

ever more precise manner. A fine-grained rule for 

sitcom jokes, for example, can tell the program to 

reserve its strongest votes for words found within real 

jokes that are found within real sitcom scripts. This 

style of humor has its own internal logic, but—just as 

we drew from “Frankenstein” to produce a 

gothic-sounding sentence—if we draw from real jokes 

when automatically generating a line of dialogue, our 

program can sample enough of this logic to create 

https://twitter.com/goodside/status/1598077257498923010?lang=en


something funny. Of course, some rules might be 

simpler. If our program is told to write about 

“peanut-butter sandwiches,” then it can always 

strengthen the vote for this specific term when the 

term appears as a candidate for what to output next. 

We can also combine the rules in arbitrary ways to 

greatly expand the capabilities of our program, 

allowing it, for example, to write about a specific topic 

in a specific style—one of the linguistic flourishes for 

which ChatGPT has become famous. 

 

We now face a new problem in our thought 

experiment: the total number of rules we need to 

address all possible user requests is immense. No 

collection of humans, no matter how dedicated, could 

ever come up with the full range required; our system, 

if it were to work as well as ChatGPT, would need a 

Borgesian library filled with rules tailored for a 

near-infinite number of esoteric topics, themes, styles, 

and demands. To make this task still harder, effectively 

implementing even a single rule can be exceedingly 

difficult. What, for example, indicates that a given 

sentence is part of a sitcom joke, versus some other 

part of a script? It’s possible to imagine mimicking the 

prose style of the King James Bible by restricting word 

searches to this well-known source, but where would 

we direct our program if asked for a response in the 



style of “a nineteen-eighties Valley Girl”? Given the 

right collection of rules, a chatbot built on 

Shannon-style text generation could produce 

miraculous results. But coming up with all the needed 

rules would be a miracle of its own. 

The computer scientists behind systems like 

ChatGPT found a clever solution to this problem. They 

equipped their programs with the ability to devise their 

own rules, by studying many, many examples of real 

text. We could do the same with our program. We start 

by giving it a massive rule book filled with random 

rules that don’t do anything interesting. The program 

will then grab an example passage from a real text, 

chop off the last word, and feed this truncated passage 

through its rule book, eventually spitting out a guess 

about what word should come next. It can then 

compare this guess to the real word that it deleted, 

allowing it to calculate how well its rules are currently 

operating. For example, if the program feeds itself an 

excerpt of Act III of “Hamlet” that ends with the words 

“to be or not to,” then it knows the correct next word is 

“be.” If this is still early in the program’s training, 

relying on largely random rules, it’s unlikely to output 

this correct response; maybe it will output something 

nonsensical, like “dog.” But this is O.K., because since 

the program knows the right answer—“be”—it can now 

nudge its existing rules until they produce a response 

https://www.amazon.com/Hamlet-William-Shakespeare/dp/1450539726


that is slightly better. Such a nudge, accomplished 

through a careful mathematical process, is likely to be 

small, and the difference it makes will be minor. If we 

imagine that the input passing through our program’s 

rules is like the disk rattling down the Plinko board on 

“The Price Is Right,” then a nudge is like removing a 

single peg—it will change where the disk lands, but 

only barely. 

The key to this strategy is scale. If our program 

nudges itself enough times, in response to a wide 

enough array of examples, it will become smarter. If we 

run it through a preposterously large number of trials, 

it might even evolve a collection of rules that’s more 

comprehensive and sophisticated than any we could 

ever hope to write by hand. 

The numbers involved here are huge. Though 

OpenAI hasn’t released many low-level technical 

details about ChatGPT, we do know that GPT-3, the 

language model on which ChatGPT is based, was 

trained on passages extracted from an immense corpus 

of sample text that includes much of the public Web. 

This allowed the model to define and nudge a lot of 

rules, covering everything from “Seinfeld” scripts to 

Biblical verses. If the data that define GPT-3’s 

underlying program were printed out, they would 

require hundreds of thousands of average-length books 

to store. 



What we’ve outlined, so far, are the conceptual 

ideas that make it possible for a program to generate 

text with the impressive style and comprehension 

displayed by tools like ChatGPT. If we really want to 

understand this technology, however, we also need to 

know something about how it’s implemented on real 

computers. When you submit a request to ChatGPT, 

the text you type into the OpenAI Web site is delivered 

to a control program running somewhere in a 

cloud-computing center. At this point, your text is 

packaged into a bunch of numbers, in a way that makes 

it easier for computers to understand and handle. It’s 

now ready to be processed by ChatGPT’s core program, 

which is made up of many distinct layers, each defined 

by a massive artificial neural network. 

Your input will be passed along these layers in 

order—as if in a digital version of the telephone 

game—with each layer using its neural network to 

identify relevant features in the text, and then 

annotating it with summaries of what it discovered for 

later layers to use. The technical details of how these 

networks operate are a bit of a red herring for our 

purposes; what’s important to grasp is that, as a 

request moves through each layer, it triggers a vast 

number of inscrutable mathematical calculations that, 

together, execute something more or less like a 

condensed, jumbled-up version of the general 



rule-based word-voting strategy that we just described. 

The final output, after your input makes it through all 

of these layers, is something that approximates a vote 

count for each possible next word. The control 

program uses these counts to semi-randomly select 

what comes next. After all of this work, we have 

generated only a single word of ChatGPT’s response; 

the control program will dutifully add it to your 

original request and run this now slightly elongated 

text through all the neural-network layers from 

scratch, to generate the second word. Then it does this 

again, and again, until it has a complete answer to 

return to your Web browser. 

There are, of course, mind-numbing technical 

terms and complex concepts lurking behind all of these 

basic components. The layers are actually called 

transformer blocks, and they combine standard 

feed-forward neural networks with a cutting-edge 

technique known as multi-headed self-attention. We 

also skipped over a key innovation in the move from 

GPT-3 to ChatGPT, in which a new reinforcement 

learning model was added to the training process to 

help the program learn to interact more naturally with 

people. 

Full graduate theses can and will be written on 

any one of these topics. None of this jargon is needed, 

however, to grasp the basics of what’s happening inside 



systems like ChatGPT. A user types a prompt into a 

chat interface; this prompt is transformed into a big 

collection of numbers, which are then multiplied 

against the billions of numerical values that define the 

program’s constituent neural networks, creating a 

cascade of frenetic math directed toward the humble 

goal of predicting useful words to output next. The 

result of these efforts might very well be jaw-dropping 

in its nuance and accuracy, but behind the scenes its 

generation lacks majesty. The system’s brilliance turns 

out to be the result less of a ghost in the machine than 

of the relentless churning of endless multiplications. 

 

We now know enough to return, with 

increased confidence, to our original question: What 

type of mind is created by a program like ChatGPT? 

When interacting with these systems, it doesn’t 

take long to stumble into a conversation that gives you 

goosebumps. Maybe you’re caught off guard by a 

moment of uncanny humanity, or left awestruck by the 

sophistication of a response. Now that we understand 

how these feats are actually performed, however, we 

can temper these perceptions. A system like ChatGPT 

doesn’t create, it imitates. When you send it a request 

to write a Biblical verse about removing a sandwich 

from a VCR, it doesn’t form an original idea about this 

conundrum; it instead copies, manipulates, and pastes 



together text that already exists, originally written by 

human intelligences, to produce something that 

sounds like how a real person would talk about these 

topics. This is why, if you read the Biblical-VCR case 

study carefully, you’ll soon realize that the advice 

given, though impressive in style, doesn’t actually solve 

the original problem very well. ChatGPT suggests 

sticking a knife between the sandwich and VCR, to “pry 

them apart.” Even a toddler can deduce that this 

technique won’t work well for something jammed 

inside a confined slot. The obvious solution would be to 

pull the sandwich out, but ChatGPT has no actual 

conception of what it’s talking about—no internal 

model of a stuck sandwich on which it can experiment 

with different strategies for removal. The A.I. is simply 

remixing and recombining existing writing that’s 

relevant to the prompt. Similar tells emerge in that 

clever “Seinfeld” script about the bubble-sort 

algorithm. Read it to the end, and you’ll discover 

characters spouting non sequiturs: Elaine, for no 

particular reason, orders chicken salad from a passing 

waiter, and this is described as causing “audience 

laughter.” ChatGPT doesn’t understand humor in any 

fundamental sense, because its neural networks have 

encoded only what a sitcom script is supposed to sound 

like. 



The idea that programs like ChatGPT might 

represent a recognizable form of intelligence is further 

undermined by the details of their architecture. 

Consciousness depends on a brain’s ability to maintain 

a constantly updated conception of itself as a distinct 

entity interacting with a model of the external world. 

The layers of neural networks that make up systems 

like ChatGPT, however, are static: once they’re trained, 

they never change. ChatGPT maintains no persistent 

state, no model of its surroundings that it modifies 

with new information, no memory of past 

conversations. It just cranks out words one at a time, in 

response to whatever input it’s provided, applying the 

exact same rules for each mechanistic act of 

grammatical production—regardless of whether that 

word is part of a description of VCR repair or a joke in 

a sitcom script. It doesn’t even make sense for us to 

talk about ChatGPT as a singular entity. There are 

actually many copies of the program running at any 

one time, and each of these copies is itself divided over 

multiple distinct processors (as the total program is too 

large to fit in the memory of a single device), which are 

likely switching back and forth rapidly between serving 

many unrelated user interactions. Combined, these 

observations provide good news for those who fear that 

ChatGPT is just a small number of technological 

improvements away from becoming HAL, from “2001: A 

https://www.newyorker.com/magazine/2018/04/23/2001-a-space-odyssey-what-it-means-and-how-it-was-made


Space Odyssey.” It’s possible that super-intelligent A.I. 

is a looming threat, or that we might one day soon 

accidentally trap a self-aware entity inside a 

computer—but if such a system does emerge, it won’t 

be in the form of a large language model. 

Even if ChatGPT isn’t intelligent, couldn’t it still 

take our jobs? Our new understanding of how these 

programs work can also help us tackle this more 

pragmatic fear. Based on what we’ve learned so far, 

ChatGPT’s functionality seems limited to, more or less, 

writing about combinations of known topics using a 

combination of known styles, where “known” means 

that the program encountered a given topic or style 

enough times during its training. Although this ability 

can generate attention-catching examples, the 

technology is unlikely in its current form to 

significantly disrupt the job market. Much of what 

occurs in offices, for example, doesn’t involve the 

production of text, and even when knowledge workers 

do write, what they write often depends on industry 

expertise and an understanding of the personalities 

and processes that are specific to their workplace. 

Recently, I collaborated with some colleagues at my 

university on a carefully worded e-mail, clarifying a 

confusing point about our school’s faculty-hiring 

process, that had to be sent to exactly the right person 

in the dean’s office. There’s nothing in ChatGPT’s 
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broad training that could have helped us accomplish 

this narrow task. Furthermore, these programs suffer 

from a trustworthiness crisis: they’re designed to 

produce text that sounds right, but they have limited 

ability to determine if what they’re saying is true. The 

popular developer message board Stack Overflow has 

had to ban answers generated by ChatGPT because, 

although they looked convincing, they had “a high rate 

of being incorrect.” Presumably, most employers will 

hesitate to outsource jobs to an unrepentant fabulist. 

This isn’t to say that large language models won’t 

have any useful professional applications. They almost 

certainly will. But, given the constraints of these 

technologies, the applications will likely be more 

focussed and bespoke than many suspect. ChatGPT 

won’t replace doctors, but it might make their jobs 

easier by automatically generating patient notes from 

electronic medical-record entries. ChatGPT cannot 

write publishable articles from scratch, but it might 

provide journalists with summaries of relevant 

information, collected into a useful format. 

 

Imitating existing human writing using 

arbitrary combinations of topics and styles is an 

impressive accomplishment. It has required 

cutting-edge technologies to be pushed to new 

extremes, and it has redefined what researchers 



imagined was possible with generative text models. 

With the introduction of GPT-3, which paved the way 

for the next-generation chatbots that have impressed 

us in recent months, OpenAI created, seemingly all at 

once, a significant leap forward in the study of artificial 

intelligence. But, once we’ve taken the time to open up 

the black box and poke around the springs and gears 

found inside, we discover that programs like ChatGPT 

don’t represent an alien intelligence with which we 

must now learn to coexist; instead, they turn out to run 

on the well-worn digital logic of pattern-matching, 

pushed to a radically larger scale. It’s hard to predict 

exactly how these large language models will end up 

integrated into our lives going forward, but we can be 

assured that they’re incapable of hatching diabolical 

plans, and are unlikely to undermine our economy. 

ChatGPT is amazing, but in the final accounting it’s 

clear that what’s been unleashed is more automaton 

than golem. ♦ 

 


