
Announcing general availability of
Zephyr 3.4
On behalf of the Zephyr community, it’s my pleasure to announce that as of today, Zephyr 3.4.0
is generally available.
Before diving into some of the notable changes and additions to this release, let’s take a look at
some key numbers for this release.

Zephyr 3.4 by the numbers
●​ 491 contributors, including 167 new contributors.
●​ 500+ boards
●​ Commit velocity: 1.94 commits/h (5023 commits since v3.3.0).

○​ 80k+ commits since day 1 (Apr. 10, 2015)
●​ 228K lines of code added
●​ 91 maintainers.

This new release is a testimony to Zephyr’s increased adoption for a wide variety of
applications. More and more companies are using Zephyr for building embedded
controllers—microcontroller-powered applications that support a computer in handling low-level
system tasks—and some of the enhancements in 3.4 are helping streamline efforts in this area.
For example, Zephyr 3.4 is adding new APIs and driver implementations to interact with NVMe
disks, SMBus peripherals, and real-time clocks in a uniform way.

Zephyr 3.4 also introduces several improvements to its built-in testing framework (Twister) that
make it possible to write more comprehensive tests than in previous versions. Developers can
now use popular third-party testing frameworks such as pyTest, GoogleTest, and
RobotFramework, to write end-to-end tests running on real or emulated hardware, and
potentially connecting to e.g. IoT servers.

If you’d like to see some of the highlights of this release in action, I’ve assembled a short video
going through some cool examples and demos.

<< VIDEO >>

If you’d rather read through them (note: you’ll find the full release notes here), here we go:

New & Noteworthy​ 2

New types of peripherals supported​ 2
Auxiliary displays​ 2

https://github.com/zephyrproject-rtos/zephyr/releases/tag/v3.4.0
https://github.com/zephyrproject-rtos/zephyr/releases/tag/v3.4.0
https://docs.zephyrproject.org/latest/releases/release-notes-3.4.html

NVMe disks​ 2
Real-time clocks​ 3
Retained memory​ 3
SMBus​ 3

New Input subsystem​ 3
New retention subsystem​ 3
Testing framework (Twister) improvements​ 3

pyTest​ 4
gTest​ 4
Robot Framework​ 4

Updates to Zephyr SDK​ 4
Snippets​ 4
Other notable APIs introduced​ 4

Memory Barriers​ 4
Bluetooth 5.4 (but not only!) additions​ 5
New boards and sensor drivers​ 5

Meet our release engineers for Zephyr 3.4​ 5

New & Noteworthy

New types of peripherals supported

Auxiliary displays
Auxiliary Displays are text-based displays that have simple interfaces for displaying textual,
numeric or alphanumeric data. You usually want to interact with these by sending characters, as
opposed to pixels. The newly added Auxiliary Text Display API enables you to do just that.
Several drivers for commonly found auxiliary displays (from Hitachi, Noritake, Jinghua, …) are
already available today. A code sample is available here.

https://docs.zephyrproject.org/latest/hardware/peripherals/auxdisplay.html
https://docs.zephyrproject.org/latest/samples/drivers/auxdisplay/README.html

NVMe disks
NVMe (Non-Volatile Memory Express) is a high-performance storage protocol that’s designed
specifically for NAND flash memory (think: Solid-State Drives (SSD), M.2 cards, …). As of 3.4,
NVMe controllers and disks are supported, and fully integrated with Devicetree to make
configuration/customization XXX.

Real-time clocks
Real-time clocks are low-power, often battery-powered, devices used for measuring the
passage of time, including when the main system might be powered off. Zephyr 3.4 adds
support for RTCs as first-class citizens, providing a consistent way to interact with them in a
hardware-independent way. Beyond basic clock get/set interactions, the API also enables
setting alarms or calibrating the clock, should these features be supported by the underlying
hardware. Drivers for popular RTC chips such as NXP PCF8523 and Motorola MC146818 are
already available.

Retained memory
The newly added retained memory API enables applications to read and write data to memory
areas (ex. uninitialized RAM section) or devices that retain information while the device is
powered. It’s a good alternative when one does not want to rely on non-volatile storage for e.g.
sharing information between different applications, or within a single application without losing
state information upon device reboot.

SMBus
SMBus (System Management Bus) is a two-wire bus derived from I²C and often used fro
communication with low-bandwidth devices on motherboards, ex. to get information from
temperature sensors, battery fuel gauges, etc. As of Zephyr 3.4, the new SMBus subsystem
allows developers to manipulate SMBus controllers and devices in their applications.

New input subsystem
The input subsystem provides an API for dispatching input events from input devices to the
application. It provides a higher/common level of abstraction for handling input events
corresponding to keys/buttons pressed, a touch display being pressed, etc. Among other things,
his makes it easier to write graphical user interfaces independently from how “inputs” are
handled at the hardware-level. This is also a great opportunity for developers to look at
leveraging Zephyr’s built-in state machine framework to handle more complex interaction
scenarios.

https://docs.zephyrproject.org/latest/hardware/peripherals/rtc.html
https://docs.zephyrproject.org/latest/hardware/peripherals/rtc.html
https://docs.zephyrproject.org/latest/services/smf/index.html

New retention subsystem
Complementing the added support for retained memory, the new Retention subsystem is
integrated with the Devicetree to easily configure and customize how data may be retained,
including the ability to create several partitions, verify data integrity through checksums, or
handling the special case of a device being rebooted, ex. to have it run a different application.

Testing framework (Twister) improvements
Twister, Zephyr’s own testing framework, is widely used internally when “dogfooding” and
making sure that Zephyr itself is well-tested. In fact, for every single pull request made to the
Zephyr repository (assuming it has code changes), our CI jobs trigger Twister and run literally
thousands of unit tests.
Zephyr 3.4 adds many improvements to Twister, making it even more suitable for complex
functional testing. Developers can now use popular third-party testing frameworks such as
pyTest, GoogleTest, and RobotFramework to write end-to-end tests running on real or emulated
hardware, and potentially connecting to e.g. IoT servers.

Updates to Zephyr SDK
It is recommended to update to the latest version of the Zephyr SDK (0.16.1). One of the main
benefits of the Zephyr SDK is that it’s a one stop shop for getting all the toolchains and host
tools that you may need for your Zephyr day-to-day development. As the SDK has grown in size
over the year, it’s worth noting that this newest version is up to 2x smaller (and hence 2x faster
to download) since it is now packaged using tar.xz (Linux/macOS) and 7zip (Windows) as
opposed to .tar.gz and .zip before.

Snippets
The newly added “snippets” help streamline all the common configuration settings (ex.
configuration files, Devicetree overlays) that one may need to re-use across various projects. A
typical use case would be to pack all your favorite debugging options (ex. enabling the shell,
custom log levels, etc.) into a snippet so that you can easily instrument an application that
needs troubleshooting, including changes that may be needed at the hardware definition level
(ex. enabling a Zephyr shell over a USB interface).

Other notable APIs introduced

Memory Barriers
A new API has been introduced for data memory barriers. Data barriers are essentially a way to
nicely tell your processor: “Hey, I know you like to rearrange tasks for efficiency, but these
particular memory operations need to happen in the exact order I’ve given them!”. This is

https://docs.zephyrproject.org/latest/services/retention/
https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.1
https://docs.zephyrproject.org/latest/build/snippets/index.html
https://docs.zephyrproject.org/latest/doxygen/html/group__barrier__apis.html

particularly useful in Symmetric Multi-Processing (SMP) scenarios, but can also be needed in
multi-threaded applications or when hardware is accessed asynchronously.
The new barrier API enables a more consistent way to implement synchronization fences,
regardless of the processor architecture.

Bluetooth 5.4 (but not only!) additions
Bluetooth Core Specification version 5.4 was released earlier this year on Feb. 7, 2023, and this
new version of Zephyr already supports pretty much every feature added to the standard,
namely:

●​ Encrypted Advertising Data (EAD), which enables secure broadcasting of data in
Bluetooth LE advertising packets ;

●​ Periodic Advertising with Responses (PAwR), a feature that allows Bluetooth Low
Energy devices to perform energy-efficient, bi-directional, communication in a
large-scale one-to-many topology. Combined with EAD, this can prove very useful for
applications such as electronic shelf labels ;

Other notable changes on the Bluetooth front include support for:

●​ Common Audio Profile (CAP) Unicast ;
●​ Telephony and Media Audio Profile (TMAP) – Bluetooth is particularly popular for all

things telephony, so it’s great to see that initial support for Bluetooth LE Telephony and
Media Audio Profile (TMAP) was added ;

●​ Mesh – Experimental support was added for recent working drafts of Mesh Protocol 1.1,
Mesh Binary Large Object Transfer Mode 1.0, and Mesh Device Firmware Update Model
1.0.

New boards and sensor drivers
●​ Over 30 additional boards are supported compared to the previous release, including the

Arduino GIGA R1 WiFi, Seeed Studio’s Wio Terminal and XIAO BLE, ESP32-S3 dev kit,
and more..

●​ Drivers for dozens of sensors (environmental sensors, IMUs, current sensors, etc.) have
been added, and it’s now over 150 sensors that are not only supported out-of-the-box in
Zephyr, but often tightly integrated with the Zephyr stack, for example to leverage power
management features.

Meet our release engineers for Zephyr 3.4
It takes a village to deliver an open-source project such as Zephyr on time every quarter, and
our release engineers are instrumental in making this happen. I’ve asked our two release
engineers for 3.4, Anas Nashif from Intel and Joshua Lilly from Meta to tell us what’s their
highlight for this new release.

●​ Anas: “The amount of changes, improvements, addition of new features and innovations
to the ecosystem we manage to deliver between two Zephyr releases and a
development time spanning 4 month is amazing and shows how the community is
marching toward one goal and such milestone is an attestation of great things to come
out of the Zephyr project as we see more contributors and members join the project. This
release is just a milestone and we are just getting started.”

●​ Joshua: “My favorite thing about 3.4 is the sheer amount of bug fixes and stability
improvements that were made to Zephyr, for example all the work that has been done to
make pthreads more robust by having them rely on Zephyr primitives.”

	Announcing general availability of Zephyr 3.4
	Zephyr 3.4 by the numbers

	New & Noteworthy
	New types of peripherals supported
	Auxiliary displays
	NVMe disks
	Real-time clocks
	Retained memory
	SMBus

	New input subsystem
	New retention subsystem
	Testing framework (Twister) improvements
	Updates to Zephyr SDK
	Snippets
	Other notable APIs introduced
	Memory Barriers

	Bluetooth 5.4 (but not only!) additions
	New boards and sensor drivers

	Meet our release engineers for Zephyr 3.4

