
Remote Work Tracker: Project Structure 
Overview 
Version: 1.0 
Date: September 3, 2025 

1. Introduction 
This document provides a comprehensive breakdown of the directory and file structure for 
the Remote Work Tracker project. The project is organized into a monorepo containing three 
distinct but interconnected components: a client-side daemon, a backend server, and a 
frontend dashboard. This structure is designed to promote a clean separation of concerns, 
streamline development, and simplify deployment. 

2. Top-Level Directory Structure 
The project root contains the three core components and global configuration files. 

remote-work-tracker/​
├── .gitignore               # Global gitignore for all sub-projects​
├── README.md                # Project overview, setup, and deployment instructions​
├── client-daemon/           # Part 1: The background activity tracker​
├── backend-server/          # Part 2: The FastAPI central server​
└── frontend-dashboard/      # Part 3: The React web interface​
 

3. Part 1: client-daemon/ 
This directory contains the lightweight, cross-platform Python application that runs on an 
employee's computer to monitor and report activity. 

client-daemon/​
├── src/​
│   ├── __main__.py          # Main entry point to start the daemon​
│   ├── config.py            # Handles loading settings from config.ini​
│   ├── tracker.py           # Core logic for tracking activity and idle time​
│   └── api_client.py        # Logic for sending data to the backend​
├── config.ini.template      # An example configuration file for users​
├── requirements.txt         # Python dependencies (psutil, pynput, requests, etc.)​
└── .gitignore               # Python-specific gitignore (e.g., __pycache__, venv)​
 



File Descriptions: 
●​ src/__main__.py: The primary executable script. It initializes the configuration, starts the 

activity listeners, and schedules the data transmission tasks. 
●​ src/config.py: Contains functions to locate, read, and validate the config.ini file. 
●​ src/tracker.py: Houses the ActivityTracker class. This file contains the core logic for 

monitoring the active window, detecting idle states using keyboard/mouse listeners, and 
buffering the log data. 

●​ src/api_client.py: Responsible for constructing the JSON payload and securely sending 
the buffered data to the backend API via HTTPS POST requests. It also handles 
connection errors and retries. 

●​ config.ini.template: A template file that users will copy and rename to config.ini to 
configure their employee_id and the backend_url. 

●​ requirements.txt: Lists all Python libraries required for the daemon to run. 
●​ .gitignore: Excludes Python virtual environments, cache files, and build artifacts from 

version control. 

4. Part 2: backend-server/ 
This directory contains the FastAPI application that serves as the central hub for data 
ingestion, processing, storage, and API exposure. 

backend-server/​
├── app/​
│   ├── __init__.py​
│   ├── main.py              # FastAPI app instance and root endpoint​
│   ├── api/​
│   │   └── v1/​
│   │       ├── endpoints/​
│   │       │   ├── activity.py  # Endpoint for /api/v1/activity​
│   │       │   ├── auth.py      # Endpoint for /auth/token​
│   │       │   └── dashboard.py # Endpoints for /api/v1/dashboard/*​
│   │       └── api.py           # Main API router for version v1​
│   ├── core/​
│   │   ├── config.py          # Application settings (database URL, secrets)​
│   │   └── security.py        # JWT handling and password hashing logic​
│   ├── db/​
│   │   ├── base.py            # Base for SQLAlchemy models​
│   │   ├── models.py          # SQLAlchemy ORM models (Users, ActivityLogs)​
│   │   └── session.py         # Database session management​
│   ├── schemas/​
│   │   ├── activity.py        # Pydantic schemas for activity data​
│   │   ├── token.py           # Pydantic schemas for JWT tokens​
│   │   └── user.py            # Pydantic schemas for user data​



│   └── services/​
│       └── categorization.py  # Logic for rule-based and AI activity classification​
├── Dockerfile                 # Instructions to build the backend Docker image​
├── docker-compose.yml         # Orchestrates the backend and database containers​
├── requirements.txt           # Python dependencies for the server​
└── .gitignore                 # Python/FastAPI specific gitignore​
 

Directory & File Descriptions: 
●​ app/main.py: The entry point for the FastAPI application. It creates the main FastAPI 

instance and includes the main API router. 
●​ app/api/v1/api.py: Combines all the individual endpoint routers (activity, auth, dashboard) 

into a single API router for the /api/v1 path. 
●​ app/api/v1/endpoints/: This package holds the API logic for each resource. 

○​ activity.py: Handles the data ingestion from the client daemons. 
○​ auth.py: Manages user authentication and JWT issuance. 
○​ dashboard.py: Contains the role-based logic to serve data to the frontend 

dashboard. 
●​ app/core/: Contains core application logic and configuration. 

○​ config.py: Loads environment variables and application settings. 
○​ security.py: Implements password hashing, JWT creation, and decoding. 

●​ app/db/: Manages database interactions. 
○​ models.py: Defines the Users and ActivityLogs tables using the SQLAlchemy ORM. 
○​ session.py: Provides logic to create and manage database sessions. 

●​ app/schemas/: Contains Pydantic models for data validation and serialization 
(request/response shapes). 

●​ app/services/: Holds business logic that is decoupled from the API endpoints. 
○​ categorization.py: Implements the rule-based and AI-powered engine to classify user 

activities. 
●​ Dockerfile: Defines the steps to create a container image for the backend application. 
●​ docker-compose.yml: A configuration file for Docker Compose to easily run the backend 

server and its PostgreSQL database together in development. 
●​ requirements.txt: Lists all Python libraries required for the server. 

5. Part 3: frontend-dashboard/ 
This directory contains the React Single Page Application (SPA) that provides the user 
interface for data visualization and analysis. 

frontend-dashboard/​
├── public/​
│   └── index.html           # Main HTML file​
├── src/​



│   ├── components/            # Reusable UI components (charts, date pickers)​
│   │   ├── ActivityPieChart.tsx​
│   │   ├── ActivityBarChart.tsx​
│   │   └── DateRangePicker.tsx​
│   ├── hooks/                 # Custom React hooks (e.g., useAuth)​
│   ├── layouts/               # Main layout components (e.g., DashboardLayout)​
│   ├── pages/                 # Top-level page components​
│   │   ├── LoginPage.tsx​
│   │   ├── IndividualView.tsx​
│   │   ├── TeamView.tsx​
│   │   └── CompanyView.tsx​
│   ├── services/              # API call definitions using Axios​
│   │   └── apiClient.ts​
│   ├── store/                 # State management stores (Zustand or Redux)​
│   │   └── authStore.ts​
│   ├── App.tsx                # Main application component with routing​
│   └── main.tsx               # Application entry point​
├── .gitignore                 # Node/React specific gitignore​
├── package.json               # Project dependencies and scripts​
├── tsconfig.json              # TypeScript configuration​
└── vite.config.ts             # Vite build tool configuration​
 

Directory & File Descriptions: 
●​ public/: Contains static assets that are publicly accessible. 
●​ src/components/: Holds small, reusable React components that are used across multiple 

pages, such as charts and form elements. 
●​ src/hooks/: Contains custom React hooks for shared logic, like managing authentication 

state (useAuth). 
●​ src/layouts/: Defines the main structural components of the app, such as 

DashboardLayout which would include the sidebar and header. 
●​ src/pages/: Contains the top-level components for each view or page in the application, 

which are mapped to specific routes. These components are responsible for fetching 
data and composing layouts and smaller components. 

●​ src/services/apiClient.ts: Configures the Axios instance, including setting the base URL 
and interceptors to automatically attach the JWT to outbound requests. 

●​ src/store/authStore.ts: Defines the Zustand (or Redux) store for managing global 
application state, such as the user's authentication token and profile information. 

●​ src/App.tsx: The root component of the React application. It sets up the client-side 
routing. 

●​ src/main.tsx: The entry point for the React application, where the App component is 
rendered into the DOM. 



●​ package.json: Defines project metadata, dependencies, and scripts (dev, build, preview). 
●​ tsconfig.json: The configuration file for the TypeScript compiler. 
●​ vite.config.ts: The configuration file for the Vite build tool. 


	Remote Work Tracker: Project Structure Overview 
	1. Introduction 
	2. Top-Level Directory Structure 
	3. Part 1: client-daemon/ 
	File Descriptions: 

	4. Part 2: backend-server/ 
	Directory & File Descriptions: 

	5. Part 3: frontend-dashboard/ 
	Directory & File Descriptions: 



