Show Complete Stack Info in SW Fetch Handler

Attention: Externally visible, non-confidential
Author: soxia@microsoft.com
erica.draud@microsoft.com

(based on work by dgozman@chromium.org)
Status: Inception

Created: 2020-07-03 / Last Updated: 2020-07-10

One-page overview

Summary

This explainer explores a new feature for debugging a fetch handler: when a debugger pauses
in the fetch handler, a user wants to see the call stack information of the page script that leads
to the fetch event (currently this part of stack is missing)

Platforms

All

Team

Songtao (Stan) Xia, soxia@microsoft.com
Erica Draud, erica.draud@microsoft.com
Tracking issue

Cr bug link to be added.

Value proposition

When a page script requests a resource that is controlled by a service worker, the fetch handler
of the service worker is called. For a developer to understand how a service worker works, it is
most helpful if the developer can step into and out of the fetch handler.

Currently, DevTools allows setting a break point in the fetch handler, but the stack information
leading to where the resource is requested in the page script is not available, as shown below.
This is due to the asynchronous nature of the handler.

v m & o@w P g
G &= : Sources Network Per y Apicatior bt . o F - x

Page wm # eo- | [[@ ’ P X 3 Ik 4+t & g 0D

adEventl Lstener] " fof £ =3 §

IE] ®fcnsols. Bilog(FetchEvent . reswest.url); 0 Pruted on broskping

Should pouse hre.

E shyles & fetchd vent .respondi thifetch{ fetchl vent . request]); * Threads

. g ® ik

¥ Ervakpoints

M sajs2
console, Logl fatchivent, re

* MHRfetch Bresipoints

¥ DO Breskpointy

Our proposed change is illustrated by the screenshots below, taken from a prototype
implementation. When the debugger pauses inside a fetch handler, we show a combined stack
information in the pane to the right. The other screenshot shows that we can move around in
the stack frames.

L -
e Lightheuse @201 £ i X
socjs K (- L
12 4 Lk {_ fatchEvent = FetchEvent (Salrunted: true, reduest: Bedurst, ¢lieftl* @ Pyyped om breskpoint

v Theesds

Main
% g s T10 (mctivated

& Watch

2-SETOCHO = Call Stack

ServlcedorverGloo

I o 3 1 =+ pie QD

“ 0 Paused on breakpaint

mutton val £t ==fetcnsmmething Fetch Usimg Fetche/butte —
Bt fge=FetchBution2™ onclicke=dfetchSometningllse()" fetch Using XM Mlain
L: B pagd 210 [soveated
¥ ‘Watch
AT
v Call Sapck
® [anon 5
n FetohSome £ () W
. - e . e
e _ o L. o !
anclic
hese Scope
ahe oeal
let responselnd = Xhe.responpe:

spenieln]
console. loglresponselo]);

Code affected

e DevTools frontend
e Backend
e CDP change

Chromium WIP PR

We have a prototype PR that implements the idea outlined below.

Signed off by

Name Write (not) LGTM in this row

yangguo@chromium.org

LGTM
shanejc@microsoft.com

szuend@chromium.org

LGTM
dgozman@chromium.org

LGTM
caseq@chromium.org

LGTM
brandm@microsoft.com

https://chromium-review.googlesource.com/c/chromium/src/+/2335644

Design

Prerequisite: V8 async debugging support

When a V8 debugger executes an async method, it is possible to stitch an existing stack (using
a V8StackTraceld) to any stack trace generated by this execution. Current frontend can parse
such combined stack traces (for example, when the stack trace is displayed).

Specifically, V8 method ExternalAsyncTaskStarted(stack trace id) adds a stack trace to the
environment in which the next async method is executed; V8 method
ExternalAsyncTaskFinished() removes that stack trace from the environment.
Execution/debugging of any async method sandwiched in between these two calls will have an
extra segment of an “ancestor” stack trace.

Approach

We extend the network CDP domain to have a method Network.setAttachDebugStack [sce] [sx7]
method. It has a Boolean flag enabled. When this flag is set, the DevTools will show a complete
stack when debugging a fetch handler. The method is named using the mechanism we used
instead of the frontend functionality because this mechanism also allows other future debugging
features.

setAttachDebugStack(boolean enabled);

More Stack Info in Fetch Handler

There are two steps. The first is for the data structures for ResourceRequest and
FetchAPIRequest to carry a stack id. The second step is to stitch the stack id to the V8 context
when calling a fetch event handler.

Add stack-id to ResourceRequest

In InspectorNetworkAgent: :PrepareRequest, if and only if the setAttachDebugHeader is on,
we add to the resource request with a field that contains a V8StackTraceld. This field will be
consumed later by the backend.

The stack trace id represents the stack trace when the resource is requested in the page script.
The trace id is obtained using V8 inspector’s storeCurrentStackTrace method.

https://v8docs.nodesource.com/node-10.15/d3/d2b/structv8__inspector_1_1_v8_stack_trace_id.html
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#a94ede4274dd214432b0e8a3ce869a0c8
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#ade88353640cbfaded40195e86e275017
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#ade88353640cbfaded40195e86e275017
https://microsoft.sharepoint.com/teams/Edge/Specs/Developer%20Experiences/Developer%20Tools/Deeper%20Stack%20in%20SW%20Fetch%20Handler.docx#_msocom_6
https://microsoft.sharepoint.com/teams/Edge/Specs/Developer%20Experiences/Developer%20Tools/Deeper%20Stack%20in%20SW%20Fetch%20Handler.docx#_msocom_7
https://cs.chromium.org/chromium/src/v8/include/v8-inspector.h?rcl=69c9ca09df3a8bb7d8eac52325df0a2008b00cab&l=229
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#aa78d85e2b1b10535308f315ff19ef1e5

Stitch stack id

Currently, when a fetch handler is called, the stack known to the V8 debugger is empty. If the
fetch api request has a stack id, we shall stitch the stack id to the empty stack. The
implementation should ensure that the stack id, which we placed in a resource request, should
be copied into the fetch api request.

This is done in ServicelWorkerGlobalScope, where the fetch handler is called. We shall wrap
the fetch event handler with a pair of ExtenalAsyncTaskStarted and
ExternalAsyncTaskFinished calls, as described above. The stack visible to the V8 debugger
is then an empty stack (which may grow when the fetch handler is executed) with a link to the
stack from page script (the stack id we pass to ExternalAsyncTaskStarted). The two stacks
may belong to two different VMs, which is fine.

The stack trace with a link will be passed to the frontend, which can correctly show such a stack
trace already. So change to the frontend is minimal.

Core user stories

When SW Developers step into a fetch handler, they want to see a stack that contains stack
frames from the page script.

Rollout plan

Waterfall.

Core principle considerations

Security
It is possible for a malicious site to send a fetch request with a bogus X-Debug-Stack-Trace-Id
field in the header. It is possible that such bogus stack id is stitched to a fetch handler stack. But the

stack trace from the fetch handler is only reported to CDP. The risk of leaking a stack trace with or
without the bogus field is the same. We may also elect to override the incoming field.

Testing plan

We shall implement some web_tests for the backend change, and e2e tests for the frontend.

Followup work

An immediate followup is when stepping over the end of a fetch handler, one should be able to
step to the logical next statement, for example, the statement after await fetch() call, or call
backs for the fetch result, or XHR onload methods. We have a prototype for this work and an

explainer will follow.

	More Stack Info in Fetch Handler
	Add stack-id to ResourceRequest
	Stitch stack id

