
Show Complete Stack Info in SW Fetch Handler 

Attention: Externally visible, non-confidential 

Author: soxia@microsoft.com  

erica.draud@microsoft.com 

(based on work by dgozman@chromium.org) 

Status: Inception 

Created: 2020-07-03 / Last Updated: 2020-07-10 

One-page overview 

Summary 

This explainer explores a new feature for debugging a fetch handler: when a debugger pauses 
in the fetch handler, a user wants to see the call stack information of the page script that leads 
to the fetch event (currently this part of stack is missing) 

Platforms 

All 

Team 

Songtao (Stan) Xia, soxia@microsoft.com 

Erica Draud, erica.draud@microsoft.com  

Tracking issue 

Cr bug link to be added. 

Value proposition 

When a page script requests a resource that is controlled by a service worker, the fetch handler 
of the service worker is called. For a developer to understand how a service worker works, it is 
most helpful if the developer can step into and out of the fetch handler.  



Currently, DevTools allows setting a break point in the fetch handler, but the stack information 
leading to where the resource is requested in the page script is not available, as shown below. 
This is due to the asynchronous nature of the handler. 

 

Our proposed change is illustrated by the screenshots below, taken from a prototype 
implementation. When the debugger pauses inside a fetch handler, we show a combined stack 
information in the pane to the right.  The other screenshot shows that we can move around in 
the stack frames. 

 



  

Code affected 

●​ DevTools frontend 
●​ Backend  
●​ CDP change 

Chromium WIP PR 

We have a prototype PR that implements the idea outlined below. 

Signed off by 

Name Write (not) LGTM in this row 

yangguo@chromium.org 
 

shanejc@microsoft.com 
LGTM 

szuend@chromium.org 
 

dgozman@chromium.org 
LGTM 

caseq@chromium.org 
LGTM 

brandm@microsoft.com 
LGTM 

https://chromium-review.googlesource.com/c/chromium/src/+/2335644


Design 

Prerequisite: V8 async debugging support 

When a V8 debugger executes an async method, it is possible to stitch an existing stack (using 
a V8StackTraceId) to any stack trace generated by this execution. Current frontend can parse 
such combined stack traces (for example, when the stack trace is displayed). 

Specifically, V8 method ExternalAsyncTaskStarted(stack_trace_id) adds a stack trace to the 
environment in which the next async method is executed; V8 method 
ExternalAsyncTaskFinished() removes that stack trace from the environment. 
Execution/debugging of any async method sandwiched in between these two calls will have an 
extra segment of an “ancestor” stack trace. 

Approach 

We extend the network CDP domain to have a method Network.setAttachDebugStack [SC6] [SX7] 

method. It has a Boolean flag enabled. When this flag is set, the DevTools will show a complete 
stack when debugging a fetch handler. The method is named using the mechanism we used 
instead of the frontend functionality because this mechanism also allows other future debugging 
features. 

 setAttachDebugStack(boolean enabled); 

More Stack Info in Fetch Handler 

There are two steps. The first is for the data structures for ResourceRequest and 
FetchAPIRequest  to carry a stack id. The second step is to stitch the stack id to the V8 context 
when calling a fetch event handler. 

Add stack-id to ResourceRequest 

In InspectorNetworkAgent::PrepareRequest, if and only if the setAttachDebugHeader is on, 
we add to the resource request with a field that contains a V8StackTraceId. This field will be 
consumed later by the backend. 

The stack trace id represents the stack trace when the resource is requested in the page script. 
The trace id is obtained using V8 inspector’s storeCurrentStackTrace method.  

 

https://v8docs.nodesource.com/node-10.15/d3/d2b/structv8__inspector_1_1_v8_stack_trace_id.html
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#a94ede4274dd214432b0e8a3ce869a0c8
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#ade88353640cbfaded40195e86e275017
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#ade88353640cbfaded40195e86e275017
https://microsoft.sharepoint.com/teams/Edge/Specs/Developer%20Experiences/Developer%20Tools/Deeper%20Stack%20in%20SW%20Fetch%20Handler.docx#_msocom_6
https://microsoft.sharepoint.com/teams/Edge/Specs/Developer%20Experiences/Developer%20Tools/Deeper%20Stack%20in%20SW%20Fetch%20Handler.docx#_msocom_7
https://cs.chromium.org/chromium/src/v8/include/v8-inspector.h?rcl=69c9ca09df3a8bb7d8eac52325df0a2008b00cab&l=229
https://v8docs.nodesource.com/node-10.15/df/d37/classv8__inspector_1_1_v8_inspector.html#aa78d85e2b1b10535308f315ff19ef1e5


Stitch stack id 

Currently, when a fetch handler is called, the stack known to the V8 debugger is empty. If the 
fetch api request has a stack id, we shall stitch the stack id to the empty stack. The 
implementation should ensure that the stack id, which we placed in a resource request, should 
be copied into the fetch api request. 

This is done in ServiceWorkerGlobalScope, where the fetch handler is called. We shall wrap 
the fetch event handler with a pair of ExtenalAsyncTaskStarted and 
ExternalAsyncTaskFinished calls, as described above. The stack visible to the V8 debugger 
is then an empty stack (which may grow when the fetch handler is executed) with a link to the 
stack from page script (the stack id we pass to ExternalAsyncTaskStarted). The two stacks 
may belong to two different VMs, which is fine. 

The stack trace with a link will be passed to the frontend, which can correctly show such a stack 
trace already. So change to the frontend is minimal. 

Core user stories 

When SW Developers step into a fetch handler, they want to see a stack that contains stack 
frames from the page script. 

Rollout plan 

Waterfall. 

Core principle considerations 

Security 

It is possible for a malicious site to send a fetch request with a bogus X-Debug-Stack-Trace-Id 
field in the header. It is possible that such bogus stack id is stitched to a fetch handler stack. But the 
stack trace from the fetch handler is only reported to CDP. The risk of leaking a stack trace with or 
without the bogus field is the same. We may also elect to override the incoming field. 

Testing plan 
We shall implement some web_tests for the backend change, and e2e tests for the frontend. 



Followup work 
An immediate followup is when stepping over the end of a fetch handler, one should be able to 
step to the logical next statement, for example, the statement after await fetch() call, or call 
backs for the fetch result, or XHR onload methods. We have a prototype for this work and an 
explainer will follow. 

 


	More Stack Info in Fetch Handler 
	Add stack-id to ResourceRequest 
	Stitch stack id 


