
Kairion Integration

Guide

Manual

Author: Sebastian Hösel
Version: 2.4.2

Issue date: 2021-11-19

2

Contents

1. Shop prerequisites​ 4

1.1 Landing Page​ 4
1.2 Product Feed​ 4

1.2.1 Google product feed​ 4
1.2.1 CSV feed​ 5

1.2.1.1 Required fields​ 5
1.2.1.2 Sponsored product fields​ 5

1.3 Category Feed​ 7
1.4 Slots​ 8
1.5 Sponsored products​ 8

2. Integration of the Kairion tag into the shop​ 9
2.1 Main Structure​ 9
2.2 Page Calls​ 9

2.2.1 Page Types​ 10
2.2.2 Products​ 10
2.2.3 Slots​ 11

2.2.3.1 Testing the Slots​ 11
2.2.4 Consent​ 12

2.2.4.1 Update consent​ 13
2.2.4.2 Optional: separate consent for data extension​ 14

2.2.5 Search results​ 15
2.2.6 Complete example: Mandatory Fields​ 15
2.2.7 Optional: Additional Tags​ 16
2.2.8 Optional: Ajax​ 16
2.2.9 Optional: Callback​ 17
2.2.10 Optional: Integration on blog pages​ 18
2.2.11 Optional: Custom landing pages​ 19

2.3 Checkout Call​ 20
2.3.1 Checkout Products​ 20
2.3.2 Complete example: Checkout​ 21

2.4 Cart Call​ 22
2.4.1 Cart Products​ 22
2.4.2 Complete example: Cart Call​ 23

3. Medi-Deal​ 24
3.1 Discounted product detail page​ 24
3.2 Discounted sales feed​ 24

4. Realtime product feed parser​ 26
4.1 General​ 26
4.2 API keys​ 26
4.3 Products update​ 26

3

4.3.1 Parsing trigger​ 26
4.3.2 Single product update​ 27

4.3.2.1 Create a new product​ 27
4.3.2.2 Update a product​ 28
4.3.2.3 Update only selected fields of a product (e.g. update price)​ 28
4.3.2.4 Delete a product​ 29

4.4 Open API description​ 29

4

1. Shop prerequisites

Other than integrating the Kairion tag into the website, a few prerequisites are needed on the
side of the shop:

1.1 Landing Page
The shop needs to provide an URL that accepts multiple product IDs and display the
provided products in the order provided via the url. To achieve this, the URL structure and a
separator between the products must be defined.

If products that are out of stock are provided via the url, these products should not be
displayed on the landing page.

If no products are shown (e.g. none are provided or none are available) this page still should
work and just not show any products.

Example
●​ https://example.com/landing/ is defined as base landing page url
●​ “_” is defined as separator
●​ https://example.com/landing/123_234_345 should display products “123”,”234”,”345”

1.2 Product Feed
The shop needs to provide a feed containing all of its products to Kairion. This feed can be
provided either as a CSV or as a Google product feed.
The data provided in the feed is updated three times a day (every 8 hours).

1.2.1 Google product feed
For information about how to provide a valid Google product feed please refer to
https://support.google.com/merchants/answer/7052112?hl=en .

https://example.com/landing/123_234_345
https://example.com/landing/123_234_345
https://support.google.com/merchants/answer/7052112?hl=en

5

1.2.1 CSV feed
The CSV can be provided either on a server of the shop or be placed & updated on a FTP
space provided by Kairion.

1.2.1.1 Required fields
Following fields are required:

Field name Description Example

product_id Internal product ID 1234

global_product_id e.g. PZN, GTIN 4150002660408

product_name Name of the product IBU-ratiopharm 400 akut
Schmerztabletten

link Link to the product https://www.testshop.de/products/1234

price Price of the product 3.49 EUR

brand_name Name of the brand IBU-ratiopharm

availability Availability of product.
Possible values:

●​ in_stock
●​ out_of_stock
●​ preorder

in_stock

1.2.1.2 Sponsored product fields

For use of Kairion sponsored products every element shown in the native product display
must be provided in the feed. The following fields are currently available for this:

Field name Description Example

description Product description IBU-ratiopharm® 400 mg ist ein
entzündungshemmendes,
fiebersenkendes und
schmerzstillendes Arzneimittel
(nicht-steroidales
Antiphlogistikum/Analgetikum).

image_link Link to image https://www.testshop.de/public/img/
1234_small.png

category Main category of the
product

Schmerzen>Schmerzmittel nach
Marken>Ratiopharm®

sale_price Discounted price of the
product

3.49 EUR

6

manufacturer_name Name of the product
manufacturer

ratiopharm GmbH

sku SKU 00266040

mobile_link Differing link on mobile
devices

https://m.testshop.de/products/1234

display_title Different title to display in
native ads

IBU-ratiopharm 400 akut
Schmerztabl... (20 stk)

pzn PZN 00266040

shipping_price Shipping cost information 4,00 Euro, ab 25 Euro
versandkostenfrei

status_text Text describing status of
the product

Reduziert!

herbal Information about herbal
ingredients

pflanzlich

homeopathic Information about
homeopathic products

homöopathisch

base_price base packaging price € 9.65/100 g

shipping_info Info text about shipping Sofort
verfügbar

quantity Quantity of elements in
package

20 Stück

form Form of the product Tabletten

price_type Type of the price UVP

If the product listing item contains some visible (or hidden, i.e. some data required for “Add
to cart” button functionality) information that does not logically fit to any field within the
currently available fields then please let us know.

7

1.3 Category Feed
The shop needs to provide a feed containing all categories that exist including their ID, title
and hierarchical structure. The tree structure should be mapped by using “;” as separator
and depicting the max. depth of the category tree.

Example
The tree

●​ all categories (1)
○​ healthcare (2)

■​ cough medicine (4)
■​ hey fever (5)

●​ pills (6)
●​ nasal spray (7)

○​ wellness (3)
■​ self tanning (8)

should be provided as
1;all categories;;;;;;;
1;all categories;2;healthcare;;;;
1;all categories;2;healthcare;4;cough medicine;;
1;all categories;2;healthcare;5;hay fever;;
1;all categories;2;healthcare;5;hay fever;6;pills
1;all categories;2;healthcare;5;hay fever;7;nasal spray
1;all categories;3;wellness;;;;
1;all categories;3;wellness;8;self tanning;;

A category ID should be either a numerical value or a string containing only small letters
without special characters ([a-z]+).

8

1.4 Slots
The shops decide together with the Partner Management of Kairion on where ads should be
displayed on a website (in which HTML element) and what the name of these spaces (slots)
should be. The shop then needs to insert the appropriate elements into the HTML in the form
<div id="slotname"></div>

The content of this element will then be replaced by an ad delivered by Kairion.

1.5 Sponsored products
To use sponsored products (banners looking like native product listings) a slot needs to be
placed inside product listings, similar to other banners. Every product field visible in the
native listing needs to be provided to Kairion via product feed (see 1.2 Product Feed).

Since sponsored products banners use volatile product data like price and availability the
product data available to Kairion has to be kept up to date. The product feed is by default
parsed every eight hours, to update product data even more often Kairion offers the
possibility to update product data in real time (see 4. Realtime product feed parser).

9

2. Integration of the Kairion tag into the shop

2.1 Main Structure
The minimal structure of the Kairion tag is as follows:
<script type="text/javascript">​
 var pagetype = '';​
 var products = [];​
 var tags = [];​
 var slots = { };

 var consent = true;​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: pagetype,​
 products: products,​
 tags: tags,

 consent: consent​
 });

 window.kias.push({​
 cmd: "setPageSlots",​
 slots: slots​
 });​
</script>​
<script src="https://js.kctag.net/kias-example.js" type="text/javascript" async></script>

​
with “https://js.kctag.net/kias-example.js” to be replaced with an url provided to the shop by
Kairion. This script must be included in every page of the shop and the variables “products”,
“tags” and “slots” filled.

2.2 Page Calls
The Kairion tag needs to be implemented on every page of the shop and always provide the
following information:

●​ current pagetype
●​ products currently displayed on the page
●​ information about given consent
●​ slots

 If applicable, the call must also be implemented on all pages of a pagination.

https://js.kctag.net/kias-example.js

10

2.2.1 Page Types
The shop agrees together with Kairion Partner Management on a list of all available page
types. As default Kairion defines the following page types:

Page type Description

front The frontpage of the shop

category_page A main category page

category_subpage A sub category page

search_result The result page of a search

product_detail The detail page of one product

landing_page The landing page, as defined in 1.1

thankyou_page The page a user sees after a checkout

An unlimited number of page types can be defined additional to these defaults.

Example
var pagetype = 'front';

2.2.2 Products
All products that are visible on the current page must be provided to Kairion in the following
form:

Key Description

gtin Internal product ID of the shop, same as in
product feed (see 1.2)
If available the global product identification
number should be used.

categories Array of categories the product belongs to,
at least one. ID must be the same as in
category feed (see 1.3)

price The price of the product, as displayed, in
Cents.

11

Example
For a page displaying three products:

●​ ID 111 with categories “cat1”,”cat2” and price 15,99€
●​ ID 222 with category “cat1” and price 9,99€
●​ ID 333 with category “cat4”, “cat5”, “cat6” and price 4,49€

The products variable must be filled like this:
var products = [​
 {gtin: "111", categories: ["cat1","cat2"], price: 1599 },​
 {gtin: "222", categories: ["cat1"], price: 999 },​
 {gtin: "333", categories: ["cat4","cat5","cat6"], price: 449 }​
];

2.2.3 Slots
The slots that were agreed upon (see 1.4) need to be provided in each page. The shop
needs to provide the slot name as well as the identifier of the HTML element it should be
displayed in.

Example
For a page containing:

●​ a slot “high” that should be displayed in HTML element “ad_above_content”
●​ a slot “sky” that should be displayed in HTML element “ad_sidebar”

the slots variable must be filled like this:
var slots = {​
 high: "ad_above_content",​
 sky: "ad_sidebar"​
};

2.2.3.1 Testing the Slots
The Kairion tag offers a function to test if the slots provided are valid. To trigger this simply
add the GET parameter “kti=est” to any url with a valid Kairion integration, this will cause all
correctly configured slots to display a test banner.

Example
https://example.com/someurl/?kti=est

https://example.com/someurl/?kti=est

12

2.2.4 Consent
The shop must provide the Kairion tag with information, if consent was given by the user to
the Kairion service. This has to be done via the “consent” field of the “setPageSettings”
command (see “2.1 Main Structure”).​
The CMP in the shop should be configured, so that, if consent was given to Kairion, “true”
(boolean) should be provided to the tag, otherwise “false” (boolean).

Example
If the user has given consent:
var consent = true;

If the user has denied consent, or did not give explicit consent yet:
var consent = false;

13

2.2.4.1 Update consent
It may be necessary to update the given consent - especially in the case of the first page a
user opens in the shop. To do this, the shop can simply call the “setPageSettings” again,
with the updated consent.

Example
At the initial page load the kairion tag was called before the user even saw the CMP:
<script type="text/javascript">​
 var pagetype = 'front';​
 var products = [];​
 var tags = [];​
 var slots = { };

 var consent = false;​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: pagetype,​
 products: products,​
 tags: tags,

 consent: consent​
 });

 window.kias.push({​
 cmd: "setPageSlots",​
 slots: slots​
 });​
</script>​
<script src="https://js.kctag.net/kias-example.js" type="text/javascript" async></script>

After the user gave consent, the shop should update the consent information by pushing the
“setPageSettings” command again:

<script type="text/javascript">​
 var pagetype = 'front';​
 var products = [];​
 var tags = [];​
 var slots = { };

 var consent = true;​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: pagetype,​
 products: products,​
 tags: tags,

 consent: consent​
 });​
</script>

14

2.2.4.2 Optional: separate consent for data extension
If the Kairion data extension is activated for the shop, the shop may ask for two separate
consent-entities in the CMP, once for Kairion instore and once for Kairion data extension.
The information that consent is given (consent: true) should in that case only be provided, if
both consent entities were consented to by the user.
Please note that this only applies if two different consents are asked for in the CMP, and then
consult the following logic table:​

Consent given Provide to Kairion tag

Instore: no / data extension: no consent: false

Instore: no / data extension: yes consent: false

Instore: yes / data extension: no consent: false

Instore: yes / data extension: yes consent: true

15

2.2.5 Search results
On search result pages the shop must provide the complete search term the visitor has
searched for.

Example
On a search result page where the visitor searched for the term “Cough syrup” the “tags”
variable must be filled like this:
var tags = ['kw_search:Cough syrup'];

2.2.6 Complete example: Mandatory Fields
A complete example for one page call (defining the variables inline) with the example data
explained above could look like:

<script type="text/javascript">​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: "search_result",​
 products: [​
 {gtin: "111", categories: ["cat1","cat2"], price: 1599 },​
 {gtin: "222", categories: ["cat1"], price: 999 },​
 {gtin: "333", categories: ["cat4","cat5","cat6"], price: 449 }​
],​
 tags: ['kw_search:Cough syrup'],

 consent: true​
 });

 window.kias.push({​
 cmd: "setPageSlots",​
 slots: {​
 high: "ad_above_content",​
 sky: "ad_sidebar"​
 }​
 });​
</script>​
<script src="https://js.kctag.net/kias-example.js" type="text/javascript" async></script>

16

2.2.7 Optional: Additional Tags
Kairion can process additional tags to provide better targetings and exclusions, the name of
these tags is freely definable. As a default Kairion defines the following tags:

Tag Description

kw_brand A page of the shop dedicated to one brand

kw_topic A page of the shop about a certain topic

These tags can be provided to Kairion similar to the search term.

Example
On a page dedicated to the brand “Aspirin” the tags variable should be filled like:
var tags = ['kw_brand:Aspirin'];

2.2.8 Optional: Ajax
When the shops implements the Kairion tag on pages that are not completely reloaded (e.g.
paginations implemented with ajax-calls) the Kairion tag has to be executed every time the
contents of the page are updated. If the shop uses a mechanism like this the option “ajax:
true” must be provided in the “setPageSettings” section.

Example
The following is a part of the complete example used in 2.2.5, extended by the ajax option.
...​
window.kias.push({​
 cmd: "setPageSettings",​
 pageType: "search_result",​
 products: [​
 {gtin: "111", categories: ["cat1","cat2"], price: 1599 },​
 {gtin: "222", categories: ["cat1"], price: 999 },​
 {gtin: "333", categories: ["cat4","cat5","cat6"], price: 449 }​
],​
 tags: ['kw_search:Cough syrup'],

 consent: true,​
 ajax: true​
});​
...

17

2.2.9 Optional: Callback
Shops can provide a custom callback function to the Kairion tag that is called as soon as the
Kairion adserver answers. This callback accepts one argument which contains the response
from the adserver. It can be provided in the key “callback” in the “setPageSlots” section.

Example
The following is a part of the complete example used in 2.2.5, extended by the callback
...​
window.kias.push({​
 cmd: "setPageSlots",​
 slots: {​
 high: "ad_above_content",​
 sky: "ad_sidebar"​
 },​
 callback: function(ads) {​
 console.log(ads);​
 }​
});​
...

18

2.2.10 Optional: Integration on blog pages
The Kairion tag can also be integrated on normal content pages inside the shop, like e.g. a
blog. To do this, the topic of the content page has to be provided like a search term on a
search result page. The provided term should make clear which topic the search page
covers, therefore the title of the page often can be used.
The pagetype that is used for these pages should be decided upon with the Kairion partner
management.
If no products are shown the products array can be left empty.

Example

var tags = ['kw_search:Die besten Tipps gegen Halsschmerzen'];

A full example for a blog page integration could look like:
<script type="text/javascript">​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: "blog_page",​
 products: [],​
 tags: ['kw_search:Die besten Tipps gegen Halsschmerzen''],

 consent: true​
 });

 window.kias.push({​
 cmd: "setPageSlots",​
 slots: {​
 high: "ad_above_content",​
 sky: "ad_sidebar"​
 }​
 });​
</script>​
<script src="https://js.kctag.net/kias-example.js" type="text/javascript" async></script>

19

2.2.11 Optional: Custom landing pages
Custom landing pages are special banners with a fixed width. These are available beneath a
specified url prefix that has to be provided by the shop.

Example

●​ https://example.com/clp/ is defined as base custom landing page url
●​ https://example.com/clp/someurl/ is available and contains the discussed slot
●​ https://example.com/clp/someotherurl/ (as well as everything else starting with

"https://example.com/clp/") is available and contains the discussed slot

A full example for a custom landing page integration, where the HTML element in which the
banner would have the ID "clp_element", could look like:
<div id="clp_element"></div> <!-- div that will be filled -->

<script type="text/javascript">​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: "custom_landing_page",​
 products: [],

 consent: true​
 });

 window.kias.push({​
 cmd: "setPageSlots",​
 slots: {​
 clp: "clp_element"​
 }​
 });​
</script>​
<script src="https://js.kctag.net/kias-example.js" type="text/javascript" async></script>

https://example.com/clp/
https://example.com/clp/someurl/
https://example.com/clp/someotherurl/
https://example.com/clp/

20

2.3 Checkout Call
Every checkout that happens in the shop must be send to Kairion. In this call the shop must
provide all products that were bought, as well as the amount of each product bought. This
should be accomplished by adding the following call once to the first page the visitor sees
after his checkout:

var checkout_products = [];​
...​
window.kias.push({​
 cmd: "checkout",​
 products: checkout_products​
});​
...

2.3.1 Checkout Products
All products that were bought must be provided to Kairion in the following form:

Key Description

gtin Internal product ID of the shop, same as in
product feed (see 1.2)
If available the global product identification
number should be used.

categories Array of categories the product belongs to,
at least one. ID must be the same as in
category feed (see 1.3)

price The price of the product, as displayed, in
Cents.

amount Amount of products that were bought

Example
For a checkout of three products:

●​ ID 111 with categories “cat1”,”cat2” and price 15,99€, bought one time
●​ ID 222 with category “cat1” and price 9,99€, bought 5 times
●​ ID 333 with category “cat4”, “cat5”, “cat6” and price 4,49€, bought 2 times

The checkout_products variable must be filled like this:
var checkout_products = [​
 { gtin: "111", categories: ["cat1","cat2"], price: 1599, amount: 1 },​
 { gtin: "222", categories: ["cat1"], price: 999, amount: 5 },​
 { gtin: "333", categories: ["cat4","cat5","cat6"], price: 449, amount: 2 }​
];

21

2.3.2 Complete example: Checkout
A complete example for the call on the page the visitor first sees after his checkout, with the
example data explained above could look like:

<script type="text/javascript">​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: 'thankyou_page',​
 products: [],​
 tags: [],

 consent: true​
 });

 window.kias.push({​
 cmd: "checkout",​
 products: [​
 { gtin: "111", categories: ["cat1","cat2"], price: 1599, amount: 1 },​
 { gtin: "222", categories: ["cat1"], price: 999, amount: 5 },​
 { gtin: "333", categories: ["cat4","cat5","cat6"], price: 449, amount: 2 }​
]​
 });​
</script>​
<script src="https://js.kctag.net/kias-example.js" type="text/javascript" async></script>

22

2.4 Cart Call
Kairion needs to be notified if visitors currently have items in their cart. This should be
accomplished by adding the following call to every page call as long as users have items in
their cart:

var cart_products = [];​
...​
window.kias.push({​
 cmd: "setCartProducts",​
 products: cart_products​
});​
...

2.4.1 Cart Products
All products that are in the cart must be provided to Kairion in the following form (same as
checkout products structure):

Key Description

gtin Internal product ID of the shop, same as in
product feed (see 1.2)
If available the global product identification
number should be used.

categories Array of categories the product belongs to,
at least one. ID must be the same as in
category feed (see 1.3)

price The price of the product, as displayed, in
Cents.

amount Amount of products that were bought

23

Example
For a cart containing three products:

●​ ID 111 with categories “cat1”,”cat2” and price 15,99€, bought one time
●​ ID 222 with category “cat1” and price 9,99€, bought 5 times
●​ ID 333 with category “cat4”, “cat5”, “cat6” and price 4,49€, bought 2 times

The cart_products variable must be filled like this:
var cart_products = [​
 { gtin: "111", categories: ["cat1","cat2"], price: 1599, amount: 1 },​
 { gtin: "222", categories: ["cat1"], price: 999, amount: 5 },​
 { gtin: "333", categories: ["cat4","cat5","cat6"], price: 449, amount: 2 }​
];

2.4.2 Complete example: Cart Call
A complete example for the call on every page the visitor visits while he has products in his
cart, in combination with the example data explained in 2.2.5 could look like:
<script type="text/javascript">​
 window.kias = window.kias || [];​
 window.kias.push({​
 cmd: "setPageSettings",​
 pageType: search_result,​
 products: [​
 { gtin: "111", categories: ["cat1","cat2"], price: 1599 },​
 { gtin: "222", categories: ["cat1"], price: 999 },​
 { gtin: "333", categories: ["cat4","cat5","cat6"], price: 449 }​
],​
 tags: ['kw_search:Cough syrup'],

 consent: true​
 });​
 window.kias.push({​
 cmd: "setPageSlots",​
 slots: {​
 high: "ad_above_content",​
 sky: "ad_sidebar"​
 }​
 });​
 window.kias.push({​
 cmd: "setCartProducts",​
 products: [​
 { gtin: "111", categories: ["cat1","cat2"], price: 1599, amount: 1 },​
 { gtin: "222", categories: ["cat1"], price: 999, amount: 5 },​
 { gtin: "333", categories: ["cat4","cat5","cat6"], price: 449, amount: 2 }​
]​
 });​
</script>​
<script src="https://js.kctag.net/kias-example.js" type="text/javascript" async></script>

24

3. Medi-Deal
Medi-Deal allows manufacturers to create campaigns for discounted products in shops. To
implement this, the shops must provide a product detail page with a discounted price, and a
feed containing all discounted sales that were generated.
For the sake of a transparent shopping experience for the user, it should be made clear on
the product detail page that the discount granted is the Medi-Deal discount. (Asterisk text,
product description, buybox, discount disruptor, etc.)."

3.1 Discounted product detail page
The shops need to provide Kairion for each medi-deal campaign with an url for a product
detail page with a discounted price. This landing page should:

●​ be in the same layout and provide same functionality as regular product detail pages
●​ provide the product with a discounted agreed upon price
●​ show the amount of discount applied to the regular price

3.2 Discounted sales feed
Kairion has to be informed about every discounted sale via a csv feed. The feed needs to
contain one line per discounted product for each checkout.
The feed must be in the following format:

Time

●​ time of checkout, format YYYY-MM-DD HH:MM:SS
Product-ID

●​ ID (PZN) of discounted product, eight digits
Discounted sales

●​ amount of discounted products sold
Discounted revenue

●​ Sum of revenue of that product in that checkout (format cents)

The feed must always contain all discounted sales (no lines are ever removed from the
feed).

25

Example
Given:

●​ a discounted product p1 with pzn 01111111, costing normally 10,00 Euro, via
discounted link 9,00 Euro

●​ a discounted product p2 with pzn 02222222, costing normally 5,00 Euro, via
discounted link 3,99 Euro

●​ a non discounted product p3 with pzn 03333333, costing 6,99 Euro
●​ a checkout c1 at 05.01.2021 13:00:00 containing 1xp1
●​ a checkout c2 at 06.01.2021 13:30:00 containing 2xp1, 1xp3
●​ a checkout c3 at 10.01.2021 13:34:30 containing 1xp1, 4xp2, 2xp3

Should result in the following CSV:

Time;Product-ID;Discounted sales;Discounted revenue
05.01.2021 13:00:00;01111111;1;900;
06.01.2021 13:30:00;01111111;2;1800;
10.01.2021 13:34:30;01111111;1;900;
10.01.2021 13:34:30;02222222;4;15.96

26

4. Realtime product feed parser

4.1 General
The automatic product feed parser in the Kairion System is run three times a day. But for
Sponsored products and banners including prices, sometimes information must be kept up
to date even more often. The Realtime product feed parser feature was created to give the
possibility to shop users to update information about products in the System more often.. To
run all queries the ID of a shop will be needed, this information can be found in the URL link
of a shop form. For available fields see 1.2.1 CSV feed.

4.2 API keys
To get access to run the product feed parser you need an API-key. For this you should either
take one of your previously generated keys, or generate a new one in the Kairion
management interface.

4.3 Products update
There are two possible ways of updating information about products in the system: triggering
the parsing or updating one product directly via query.

4.3.1 Parsing trigger
In case multiple changes are needed, shop users can change all this information in their
product feed, and after all changes are saved, users can trigger a product feed parsing on
Kairion side. To do this use this query with your previously generated API-key and shop-ID:

curl --location --request POST 'https://products.kairion.de/parse?access_token=API-key' \
--header 'Content-Type: application/json' \
--data-raw '["SHOP_ID"]'

As a response you may get the following:

1.​ Parsing feed task is in queue and products will be updated soon (Status: 202)
2.​ Parsing for these shop(s) has finished recently and you need to wait XX minutes

before you can trigger another parsing (Status: 429)

Parsing can be only run if there are no currently running parsing jobs of your shop and the
last update was made more than two hours ago.

27

4.3.2 Single product update
In case if only one product needs to be changed you can use the following queries below.
There is no need to run a product feed parsing after sending these requests.

4.3.2.1 Create a new product

curl --location --request POST
'https://products.kairion.de/products/SHOP_ID?access_token=API-key' \
--header 'Content-Type: application/json' \
--data-raw '{
 "product_id": "000000000",
 "global_product_id": "00",
 "product_name": "test product",
 "description": "test description",
 "link": "https://test.com",
 "availability": "in_stock",
 "price": 650,
 "manufacturer_name": "test manufacturer",
 "brand_name": "test brand"
}'

As a response you may get one of the following:

1.​ New product was created, you’ll see that the "status": "active" was set by default if
there wasn’t any value (Status: 201)

2.​ Product with such product_id was created already, so old product was updated
(Status: 200)

3.​ Product is missing required fields or fields have invalid values (Status: 400)

28

4.3.2.2 Update a product

curl --location --request POST
'https://products.kairion.de/products/SHOP_ID?access_token=API-key' \
--header 'Content-Type: application/json' \
--data-raw '{
 "product_id": "000000000",
 "status": "active",
 "global_product_id": "00",
 "product_name": "test product",
 "link": "https://test.com",
 "availability": "preorder",
 "price": 800,
 "manufacturer_name": "test manufacturer",
 "brand_name": "test brand"
}'

This request is the same as the one before (creating a product) so not existing fields will be
removed.

As a response you may get one of the following:

1.​ New product was created, because product with product_id wasn’t found (Status:
201)

2.​ Product was updated (Status: 200)
3.​ Product is missing required fields or fields have invalid values (Status: 400)

4.3.2.3 Update only selected fields of a product (e.g. update price)

curl --location --request PATCH
'https://products.kairion.de/products/SHOP_ID/PRODUCT_ID?access_token=API_key \
--header 'Content-Type: application/json' \
--data-raw '{
 "description": "some other description",
 "price": 968
}'

As a response you may get one of the following:

1.​ Product was updated (Status: 200)
2.​ Product fields have invalid values. (Status: 400)
3.​ Product not found (Status: 404)

29

4.3.2.4 Delete a product

curl --location --request DELETE
'https://products.kairion.de/products/SHOP_ID/PRODUCT_ID?access_token=API-key'

As a response you may get one of the following:

1.​ Product status set to “inactive“, which means it was marked as deleted (Status: 204)
2.​ Product not found (Status: 404)

4.4 Open API description
To see the “human readable” api description paste the following code to
https://editor.swagger.io

openapi: 3.0.3

info:

 title: Product feed

 description: >-

 Public API for shops

 version: 1.0.0

servers:

 - url: 'https://products.kairion.de/'

paths:

 '/parse':

 post:

 tags:

 - parsing

 summary: Add parsing to queue

 description: Add your product feed to parsing queue

 requestBody:

 content:

 'application/json':

 schema:

 $ref: '#/components/schemas/ParseRequest'

 responses:

 202:

 description: New parsing task was added to queue

 content: {}

 400:

 description: Invalid request

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ValidationError'

 401:

 description: No API access token in request or invalid

 content: {}

 403:

 description: No rights for shop

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ValidationError'

 429:

30

 description: Shop product feed has been parsed recently and you need to wait

 headers:

 Retry-After:

 schema:

 type: integer

 description: Timeout in seconds when new requset will be available

 content: {}

 security:

 - access_token: []

 '/products/{shopID}':

 post:

 tags:

 - product

 summary: Create or update product

 parameters:

 - name: shopID

 description: Your shop id in Kairion system

 in: path

 required: true

 schema:

 type: string

 pattern: '/^[a-f\d]{24}$/'

 example: '507f191e810c19729de860ea'

 requestBody:

 content:

 'application/json':

 schema:

 $ref: '#/components/schemas/ProductWithID'

 responses:

 201:

 description: New product was created

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ProductWithID'

 200:

 description: Product was updated

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ProductWithID'

 400:

 description: Invalid request

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ValidationError'

 401:

 description: No API access token in request or invalid

 content: {}

 403:

 description: No rights for shop or

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ValidationError'

31

 security:

 - access_token: []

 '/products/{shopID}/{productID}':

 parameters:

 - name: shopID

 description: Your shop id in Kairion system

 in: path

 required: true

 schema:

 type: string

 pattern: '/^[a-f\d]{24}$/'

 example: '507f191e810c19729de860ea'

 - name: productID

 in: path

 required: true

 schema:

 type: string

 patch:

 tags:

 - product

 summary: update one or more product fields

 requestBody:

 content:

 'application/json':

 schema:

 $ref: '#/components/schemas/ProductPatchRequest'

 responses:

 200:

 description: Product was updated

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ProductWithID'

 400:

 description: Invalid request

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ValidationError'

 401:

 description: No API access token in request or invalid

 content: {}

 403:

 description: No rights for shop

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ValidationError'

 404:

 description: Product or shop not found

 content: {}

 security:

 - access_token: []

 delete:

 tags:

 - product

32

 summary: Set product as inactive

 responses:

 204:

 description: Product was deleted

 content: {}

 401:

 description: No API access token in request or invalid

 content: {}

 403:

 description: No rights for shop

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/ValidationError'

 404:

 description: Product or shop not found

 content: {}

 security:

 - access_token: []

components:

 securitySchemes:

 access_token:

 description: unique API access token for each shop

 type: apiKey

 name: access_token

 in: query

 schemas:

 ProductWithID:

 type: object

 additionalProperties: false

 properties:

 product_id:

 description: unique product id for your shop

 type: string

 product_name:

 type: string

 link:

 type: string

 format: uri

 availability:

 type: string

 enum:

 - in_stock

 - out_of_stock

 - preorder

 default: in_stock

 price:

 type: integer

 format: int32

 description: in cents

 brand_name:

 type: string

 global_product_id:

 type: string

 manufacture_name:

33

 type: string

 description:

 type: string

 image_link:

 type: string

 format: uri

 mobile_link:

 type: string

 format: uri

 category:

 type: string

 sku:

 type: string

 required:

 - product_id

 - product_name

 - link

 - price

 - brand_name

 ProductPatchRequest:

 type: object

 additionalProperties: false

 properties:

 product_name:

 type: string

 link:

 type: string

 format: uri

 availability:

 type: string

 enum:

 - in_stock

 - out_of_stock

 - preorder

 price:

 type: integer

 format: int32

 description: in cents

 brand_name:

 type: string

 global_product_id:

 type: string

 manufacture_name:

 type: string

 description:

 type: string

 image_link:

 type: string

 format: uri

 mobile_link:

 type: string

 format: uri

 category:

 type: string

 sku:

 type: string

34

 ParseRequest:

 type: array

 items:

 type: string

 pattern: '/^[a-f\d]{24}$/'

 example: '507f191e810c19729de860ea'

 description: Your shop id in Kairion system

 minItems: 1

 ValidationError:

 type: object

 properties:

 status:

 type: number

 error:

 type: string

	Kairion Integration Guide
	Manual
	
	
	
	
	Author: Sebastian Hösel
	Version: 2.4.2
	
	Contents
	
	1. Shop prerequisites
	1.1 Landing Page
	1.2 Product Feed
	1.2.1 Google product feed
	
	1.2.1 CSV feed
	1.2.1.1 Required fields
	1.2.1.2 Sponsored product fields

	
	1.3 Category Feed
	
	1.4 Slots
	1.5 Sponsored products

	
	2. Integration of the Kairion tag into the shop
	2.1 Main Structure
	2.2 Page Calls
	
	2.2.1 Page Types
	2.2.2 Products
	

	2.2.3 Slots
	2.2.3.1 Testing the Slots

	
	2.2.4 Consent
	
	2.2.4.1 Update consent
	2.2.4.2 Optional: separate consent for data extension

	
	2.2.5 Search results
	2.2.6 Complete example: Mandatory Fields
	
	2.2.7 Optional: Additional Tags
	2.2.8 Optional: Ajax
	
	2.2.9 Optional: Callback

	
	
	2.2.10 Optional: Integration on blog pages

	
	2.2.11 Optional: Custom landing pages

	
	
	2.3 Checkout Call
	2.3.1 Checkout Products
	

	2.3.2 Complete example: Checkout

	
	2.4 Cart Call
	2.4.1 Cart Products
	

	
	2.4.2 Complete example: Cart Call

	3. Medi-Deal
	3.1 Discounted product detail page
	3.2 Discounted sales feed

	4. Realtime product feed parser
	4.1 General
	4.2 API keys
	4.3 Products update
	4.3.1 Parsing trigger
	4.3.2 Single product update
	4.3.2.1 Create a new product
	
	4.3.2.2 Update a product
	4.3.2.3 Update only selected fields of a product (e.g. update price)
	4.3.2.4 Delete a product

	4.4 Open API description
	

