

Proposal: Patron Milestones 2-7 Development

Proponent: 14wVYf1pE3CSWxFamrVT6TTYbRqn68Nbic14sTo13si7YQvk
Date: 04.08.2023
Requested DOT: $187,560 paid in two installments, one on the initial approval date and
the other upon the report delivery. The price for each installment will be calculated on
those dates to DOT using the EMA7 rate on Subscan

 Summary
Patron is a tool to verify & build smart-contracts in one step. Smart contract verification is crucial
for ensuring the security, reliability, and trust-worthiness of dApps and blockchain platforms.
With Patron, you can simplify the deployment flow and help make the Polkadot ecosystem more
secure.

In this proposal we are describing the next Patron milestones.
In general, we’d like to unite all the work in this roadmap in next main points:

●​ Utilizing Parity’s verification image on a server in an isolated manner to ensure server
safety of both our and self-hosted environments

●​ Implementing a new subcommand, which automatically checks server code hash against
the local build code hash using the local source code

●​ Implementing the Caller UI
●​ Implementing local build capabilities that don’t use Docker, to improve user flow for

contract testing cases, where quick builds are required
●​ ink! Code analyzer integration

The team behind this product is Brushfam, led by professionals such as Markian Ivanichok and
Green Baneling who are behind PSP22, PSP34, and PSP37 standards creation, major impact
on how ink! works, creation of such infrastructure products for ink! smart contract ecosystem as
Sol2Ink, Typechain and OpenBrush itself.

Context
Brushfam’s goal is to increase adoption of Polkadot's WASM technology. This can be achieved
by providing a supportive ecosystem for new developers. To make this happen, we think there is
the need for a robust development infrastructure, including easy-to-use and time-saving
products like OpenBrush and educational resources.

https://patron.works/
https://brushfam.io/
https://twitter.com/0xMarkian
https://github.com/xgreenx
https://github.com/w3f/PSPs/blob/master/PSPs/psp-22.md
https://github.com/w3f/PSPs/blob/master/PSPs/psp-34.md
https://github.com/w3f/PSPs/blob/master/PSPs/psp-37.md
https://github.com/727-Ventures/sol2ink
https://github.com/727-Ventures/typechain-polkadot
https://github.com/727-Ventures/openbrush-contracts
https://brushfam.io/

Patron Team

Brushfam team, that develops Patron, is led by professionals such as Markian Ivanichok and
Yurii Yazupol who were the initial creators of Patron at its beginning. Other team members that
are going to work with this proposal:

Yurii Yazupol - Product Lead​
Ivan Leshchenko - Blockchain Developer
Nameless Endless - Blockchain Developer
Dominik Krížo - Head of Engineering
Artem Lech - Blockchain Developer
Varex Silver - Blockchain Developer​
Matviy Matsipura - Designer
Alina Antropova - Business Developer (Business & Community Developer)

Now sharing the same mission they are working on Brushfam and its infrastructure products.

Our team has a track record of successfully delivered milestones within grants:

Patron Grant (funded by Web3Foundation)​

​

Typechain-Polkadot Grant (funded by Web3Foundation)​

Typechain-Polkadot Grant Follow Up (funded by Web3Foundation)

Typechain-Polkadot Grant Follow Up 2 (funded by Web3Foundation)​

Sol2ink Grant (funded by Web3Foundation)

Sol2ink Grant Follow Up (funded by Web3Foundation)​

OpenBrush Grant (funded by Web3Foundation)

OpenBrush Grant Follow Up (funded by Web3Foundation)

OpenBrush Grant Follow Up 2 (funded by Web3Foundation)

OpenBrush Grant (funded by AlephZero) - covered 10th milestone​

https://twitter.com/0xMarkian
https://github.com/meold
https://github.com/meold
https://github.com/ivan770
https://github.com/o-tsaruk
https://twitter.com/krikoeth
https://github.com/Artemka374
https://github.com/varex83
https://github.com/w3f/Grants-Program/blob/master/applications/patron.md
https://github.com/w3f/Grants-Program/blob/master/applications/typechain-polkadot.md
https://github.com/w3f/Grants-Program/blob/master/applications/typechain-polkadot-follow-up.md
https://github.com/w3f/Grants-Program/blob/master/applications/typechain-polkadot-follow-up-2.md
https://github.com/w3f/Grants-Program/blob/master/applications/sol2ink.md
https://github.com/w3f/Grants-Program/blob/master/applications/sol2ink-follow-up.md
https://github.com/w3f/Grants-Program/blob/master/applications/openbrush.md
https://github.com/w3f/Grants-Program/blob/master/applications/openbrush-follow-up.md
https://github.com/w3f/Grants-Program/blob/master/applications/openbrush-follow-up-2.md
https://docs.google.com/document/d/1OySc-dNTBWTF768GOLiPgh4plE1kkO2wI37z-hXvy78

Our motivation for developing Patron

Our primary motivation is the mission we set when creating Patron and Brushfam. To make
Patron an entry point for developers coming into the ecosystem and businesses building their
projects in it. Nowadays, smart contracts are one of the main instruments of development in the
blockchain world. As blockchain itself should be open and reliable, we want to create a registry
of all available contracts, so everyone could understand the risks and check whether a specific
contract is safe or not.

The other side of it - manager of smart contracts, so every developer could manage his own
contracts just like using GitHub. It is very important for users to have connection with what
developers do, so that will increase trust between them.

Teams that use Patron:

Astar Network

Aleph Zero

Phala Network

Problem statement

1. Seamless verification. An ability to seamless get your on-chain deployed contract logic

verified and matched with existing source code, using the usual deployment flow without

obscure actions.

2. Cumbersome build/local deploy/debug flow. No automatic build/deploy/debug flow results

in multiple repetitive manual actions.​

f.e. current flow:

1. Change is done to the code

2. You are going to the terminal, entering ‘cargo-contract build`

3. now you must locate your compiled wasm file in the UI filesystem

4. Now you must drag to contracts-ui UI, then press the button upload

5. Then initiate and manually pass all arguments

6. Now imagine you have to repeat this process 10x/20x etc pretty cumbersome.

We believe this flow can be automated.

https://astar.network/
https://alephzero.org/
https://www.phala.network/en/

3. Inefficient contract deployment. CLI/script deployment usually are not sufficient for

local/testnet development while existing UI instruments are rather complicated . Also, there is no

common deploy flow for every stage - local/testnet/production, a tool that would combine both

CLI automation and UI playground.

4. Unified contract management. Deployed smart contract management is currently done with

the usage of hard-to-use CLI tools or UI instruments with just the basic features available. Also,

developer contract management(UI used during development) and post-deployment contract

management are different tools and interfaces(UIs).

5. Vulnerability research is done mostly ad-hoc, with no unified platform being available to

assist users in covering common vulnerabilities. Ecosystem also lacks automatic vulnerability

scanning platform, which will catch common mistakes in smart contracts that could lead to

security issues.

6. Interaction with external resources (like HTTP APIs) based on events is obscure and has

to be implemented manually.

Proposed solution
Database search
Users will have capabilities to perform database queries to retrieve scanned smart contract
information, verified source code data, pre-built WASM blobs and JSON metadata values.

Smart contract verification module
As part of our deployment flow, the verification module will provide a reproducible verification
environment to build and verify ink! smart contracts.
Users will be able to supply smart contract code and tooling versions, which will be invoked
inside of an isolated environment.
After user supplied code build, smart contract explorer users can see verification details (similar
to how it’s implemented in EtherScan).
To start using the verification module, users will need to pay a fee. This will protect the
verification module from abuse.

Smart contract manager
Manager that will allow users to register and deploy their contracts and invoke various actions
on existing contracts available on the platform, such as periodic invocation and vulnerability
scanning.

Unified ink! smart contract manager solution allows us to provide improved transparency (by
building a contract ourselves and publishing it or by verifying an already published contract to
match the provided source code), security (integrated vulnerability scanning, audit publishment
capabilities) and versatility (periodic contract invocation, integrated scripting features.).
Smart contract manager should provide most (if not all) of its functionality while keeping user’s
private keys private, without delegating them to Patron.

Deployment tool
As part of our platform, we plan to provide users with a unified deployment tool that builds and
publishes smart contracts for popular mainnets, testnets, and the user’s local development
node.
When used with mainnets, the contract deployment process is done on our platform side using
isolated containers and contract verification workflow.
With testnets or local development nodes, we plan to simplify the onboarding process by
automatically downloading required tooling and libraries for popular operating systems, ensuring
that local builds work out of the box.
Eventually, we plan to unify our tools into Patron CLI, allowing developers to create new ink!
contracts, use existing smart contract templates, transpile existing Solidity contracts, or
generate Typechain bindings without leaving the same unified interface they will already be
familiar with.

Build/compile flow improvement
Our unified deployment tool will also include code watching capabilities, allowing developers to
quickly test application locally in an interactive fashion, without wasting time on manual smart
contract deployment and instantiation.

Vulnerability scanning and bug bounty program
We plan to integrate security features into our platform by providing users with capabilities to
review existing smart contract audits done by third-party companies and eventually provide a
platform to audit smart contracts.
Vulnerability scanning can be invoked automatically to detect various common vulnerabilities via
pre-configured intrinsics, while still allowing users to review contracts in more detail if necessary.

Scripting functionality
As part of the smart contract manager, we plan to provide a scripting functionality that will allow
smart contract developers to access external APIs and implement complex workflows that
depend on external data.

Patron will automatically (and in a verifiable way) request external APIs and call user’s smart
contract methods with data obtained from the response.
This workflow may be executed based on the contract’s dispatched events or just by periodic
contract calls.

Why Polkadot Network?

We believe that Polkadot is one of the most technological solutions on the market. Our platform
can significantly improve the ink! ecosystem by covering transparency and security and
providing versatile features, allowing developers and smart contract users to discover, discuss
and improve.

We are also developing other infrastructural solutions that are aimed at this strategic goal and
help the community of developers and businesses to solve their problems more effectively.

Milestones

Milestone 2

●​ Estimated Duration: 3.5 weeks
●​ FTE: 2.6
●​ Costs: 43 680 USD
●​ Covered by Aleph Zero: 18 900 USD
●​ Covered by Polkadot: 24 780 USD

Summary:

●​ Server image update, ability to verify code locally against the remote server

Number Deliverable Specification

0a. License MIT

0b. Documentation Extend Patron documentation with
newly added features. We will
provide API documentation for
contributors to get along with the
codebase.

1. Server image update Utilize Parity’s verification image on a

server in an isolated manner to
ensure server safety of both our and
self-hosted environments. By utilizing
Parity’s image we can ensure that
cargo-contract ’s verifiable builds
have the same code hash as our own
remote builds.

1.1 CLI patron verify command We will implement a new
subcommand, which automatically
checks server code hash against the
local build code hash using the local
source code. This will ensure that
developer can trust our remote build
server, because code hash of the
remote build is the same as local
machine’s local builds.

2. UI updates Improve user interface by including
helpful guides into the web UI itself.

2.1 Front-end part Implement new design

2.2 UI/UX design The UI design can be previewed
here.

3. Delivery Delivery of completed tasks

Milestone 3

●​ Estimated Duration: 4.5 weeks
●​ FTE: 1.8
●​ Costs: 38 880 USD
●​ Covered by Aleph Zero: 13 500 USD
●​ Covered by Polkadot: 25 380 USD

Summary:

●​ Contract call interface

Number Deliverable Specification

0a. License MIT

https://www.figma.com/file/nR2HHJ9QNiSYapE4szTuo8/Patron-Website
https://www.figma.com/file/nR2HHJ9QNiSYapE4szTuo8/Patron-Website

0b. Documentation Extend Patron documentation with
newly added features. We will
provide API documentation for
contributors to get along with the
codebase.

1. Smart contract method call interface We will provide users with
functionality to perform calls to smart
contracts from our UI.

1.1 UI/UX design Front-end development includes
UI/UX design, which incorporates our
own style guidelines to streamline
user experience while interacting with
the contract call interface.

1.2 Method discovery Parsing of contract metadata will be
implemented on the client-side.

1.3 Dynamic generation of call inputs We will implement a dynamically
generated front-end for smart
contract invocation purposes.

2. Delivery Delivery of completed tasks

Milestone 4

●​ Estimated Duration: 3.5 weeks
●​ FTE: 2.6
●​ Costs: 43 680 USD
●​ Covered by Aleph Zero: 18 900 USD
●​ Covered by Polkadot: 24 780 USD

Summary:

●​ Build developer environment (Docker-less local build CLI capabilities)

Number Deliverable Specification

0a. License MIT

0b. Documentation Extend documentation with a
description of newly added features

1. Local build capabilities We will implement local build
capabilities that don’t use Docker, to
improve user flow for contract testing
cases, where quick builds are
required. To improve the developer
experience itself, we are planning to
implement the watch command,
which will handle the automatic
upload, instantiation and debug UI
loading.

1.1 Tooling installation guidance Automatic or guided tool installation
will be implemented where possible,
simplifying user interaction with CLI.

1.2 CLI and website interface UI/UX We will design CLI in a way reduces
any usage friction as much as
possible. Website UI will be extended
with local node information.

1.3 CLI watch capabilities Integrate filesystem watch
capabilities that will automatically
trigger cargo-contract build and
open contract method call UI.

1.4 Multicontract projects support We will support projects where
multiple crates are providing multiple
contracts

1.5 Contract caller local node support
front-end

Local Substrate nodes will be
supported by our contract caller
interface.

2. Delivery Delivery of completed tasks

Milestone 5

●​ Estimated Duration: 3.5 weeks
●​ FTE: 2.6
●​ Costs: 43 680 USD
●​ Covered by Aleph Zero: 18 900 USD
●​ Covered by Polkadot: 24 780 USD

Summary:

●​ ink! Code analyzer integration

Number Deliverable Specification

0a. License MIT

0b. Documentation Extend Patron documentation with
newly added features. We will provide
API documentation for contributors to
get along with the codebase.

1. ink! Analyzer integration We will integrate ink! Analyzer tool
into Patron for automatic code
scanning in remote builds. Using ink!
Analyzer, we plan to scan contracts
for known vulnerabilities and
mistakes, enabling developers to
identify errors in contracts more
quickly. While the tool itself is new, it’s
extremely extensible and can be
utilized as a simple Rust library. This
feature introduced to allow for a more
"in-depth" look into the diagnostics
themselves. Ink! Analyzer's API is
providing an expressive diagnostics
API for that task
(https://docs.rs/ink-analyzer/latest/ink
_analyzer/struct.Analysis.html), which
will allow us to integrate it more
deeply with our UI and CLI without
relying on using unsandboxed tooling
or stdout parsing. (demonstration
output)

1.1 Builder integration Build processes will invoke ink!
Analyzer tool automatically and
collect diagnostics into the database.
This feature will assist developers in
automatically catching common
mistakes without the need for any
manual tool installation.

https://docs.rs/ink-analyzer/latest/ink_analyzer/struct.Analysis.html
https://docs.rs/ink-analyzer/latest/ink_analyzer/struct.Analysis.html
https://www.notion.so/Patron-Proposal-53110c655c4a4f63b2b5b7e6f4ac03f0?pvs=21
https://www.notion.so/Patron-Proposal-53110c655c4a4f63b2b5b7e6f4ac03f0?pvs=21

1.2 Front-end display Diagnostics related to a particular
code hash or contract will be
displayed on the associated pages.

1.3 Tool UX planning This task is very important as
developer flow starts from CLI. We
plan to carefully evaluate user
experience for interactions with CLI,
optimizing user flow as much as
possible. As part of the task, we plan
to improve visual output of our
commands, with experience of
developers and designers in mind.

1.4 Diagnostic messages UI/UX For diagnostics, an integrated into
our current design system interface
will be implemented. Diagnostic
messages will contain information
about the source code line where a
warning was issued, severity of such
a message and its contents. This
information will help developers
analyze smart contract problems
quickly and easily.

2 Delivery Delivery of completed tasks

Milestone 6

●​ Estimated Duration: 3.5 weeks
●​ FTE: 1.8
●​ Costs: 30 240 USD
●​ Covered by Aleph Zero: 0 USD
●​ Covered by Polkadot: 30 240 USD

Summary:

●​ CLI expansion

Number Deliverable Specification

0a. License MIT

0b. Documentation Extend Patron documentation with
newly added features. We will provide
API documentation for contributors to
get along with the codebase.

1. Testing guidelines Core functionality will be covered by
a comprehensive unit test suite.

2. Deployment tool expansion Deployment tool is to be expanded to
support local development workflows,
integration with sol2ink, OpenBrush
and TypeChain.

2.1 OpenBrush and sol2ink and
Typechain

We will build our own wrappers which
will encapsulate the tools themselves
into a unified CLI utility. For
OpenBrush, we will provide pre-made
templates for new projects, and for
sol2ink - we will provide tools to
create new projects from existing
Solidity smart contracts.

2.2 Tool UX planning We plan to carefully evaluate user
experience for interactions with CLI,
optimizing user flow as much as
possible.

3 Delivery Delivery of completed tasks

Milestone 7

●​ Estimated Duration: 4 weeks
●​ FTE: 3
●​ Costs: 57 600 USD
●​ Covered by Aleph Zero: 0 USD
●​ Covered by Polkadot: 57 600 USD

Summary:

●​ Scripting (oracle-like) function ability

Number Deliverable Specification

0a. License MIT

0b. Documentation Extend Patron documentation with
newly added features. We will provide
API documentation for contributors to
get along with the codebase.

1. Scripting functionality We will implement scripting
functionality for smart contract to
interact with off-chain environment.

1.1 Editor A script editor will be implemented,
which will allow user to edit scripts on
the website itself.

1.2 Runtime We will implement a runtime for script
to be executed in, which will isolate
separate scripts from each other.

2 Delivery Delivery of completed tasks

Payment conditions
$187,560 paid in two installments, one on the initial approval date and the other upon the report
delivery. The price for each installment will be calculated on those dates to DOT using the EMA7
rate on Subscan.

Team members rates
Backend Rust Developer: Our Backend Rust developers are specialized in their field and have
a deep understanding of the intricacies involved. Their hourly rate is $100/hr, which reflects
their expertise and the market rate for professionals of their caliber.

Frontend Developer: The hourly rate for our Frontend developers, who ensure seamless
functionality and user experience, is $80/hr.

Product Lead: Guiding the direction and strategy of the project, our Product Lead has an hourly
rate of $120/hr, reflective of their experience and the responsibilities they shoulder.

UI/UX Designer: Crafting the visual and user interaction aspects of our product, our UI/UX
designer have an hourly rate of $75/hr.

Tester: Ensuring the quality and functionality of our product, our Tester come in with an hourly
rate of $50/hr.

	 Summary
	Context
	Patron Team
	Our team has a track record of successfully delivered milestones within grants:
	Our motivation for developing Patron
	Teams that use Patron:

	Proposed solution
	Why Polkadot Network?

	Milestones
	Milestone 2
	Milestone 3
	
	Milestone 4
	Milestone 5
	Milestone 6
	Milestone 7

	Payment conditions
	Team members rates

