

KONGUNADU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS

SUBJECT NAME: DISCRETE MATHEMATICS

SUBJECT CODE: MA8351

UNIT – I

LOGIC AND PROOFS

1. Prove that $P, P \rightarrow Q, Q \rightarrow R \Rightarrow R$.

Solution:

Step	Premises	Rule	Reasons
1	$P \rightarrow Q$	P	Given Premises
2	P	P	Given Premises
3	Q	T	(1),(2), $P \rightarrow Q, P \Rightarrow Q$
4	$Q \rightarrow R$	P	Given Premises
5	R	T	(3),(4), $Q, Q \rightarrow R \Rightarrow R$

2. Without using truth table show that $P \rightarrow (Q \rightarrow P) \Leftrightarrow \neg P \rightarrow (P \rightarrow Q)$

Solution:

L.H.S: $P \rightarrow (Q \rightarrow P)$

Step	Premises	Reasons

1	$P \rightarrow (Q \rightarrow P)$	Conditional as disjunction
2	$\Leftrightarrow \neg P \vee (\neg Q \vee P)$	Commutative law
3	$\Leftrightarrow (\neg Q \vee P) \vee \neg P$	Associative law
4	$\Leftrightarrow (\neg Q \vee (P \vee \neg P))$	$P \vee \neg P \leftrightarrow T$
5	$\Leftrightarrow (\neg Q \vee T)$	$P \vee T = T$
6	$T \dots\dots\dots(1)$	

R.H.S: $(\neg P) \rightarrow (P \rightarrow Q)$

Step	Premises	Reasons
1	$\neg(\neg P) \vee (\neg P \vee Q)$	Conditional as disjunction
2	$\Leftrightarrow P \vee (\neg P \vee Q)$	Double negation law
3	$\Leftrightarrow P \vee (\neg P \vee Q)$	Associative law
4	$\Leftrightarrow (P \vee \neg P) \vee Q$	$P \vee \neg P \leftrightarrow T$
5	$\Leftrightarrow (T \vee Q)$	$P \vee T = T$

6	$T \dots \dots \dots (2)$	
---	---------------------------	--

From (1) &(2), we get

$$P \rightarrow (Q \rightarrow P) \Leftrightarrow (\neg P) \rightarrow (P \rightarrow Q)$$

3. Show that $P \rightarrow (Q \rightarrow R) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$ is a tautology.

Solution: Let $A = P \rightarrow (Q \rightarrow R) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$

$$B = (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

$$C = P \rightarrow (Q \rightarrow R)$$

P	Q	R	$Q \rightarrow R$	$P \rightarrow Q$	$P \rightarrow R$	C	B	A
T	T	T	T	T	T	T	T	T
T	T	F	F	T	F	F	F	T
T	F	T	T	F	T	T	T	T
T	F	F	T	F	F	T	T	T
F	T	T	T	T	T	T	T	T
F	T	F	F	T	T	T	T	T
F	F	T	T	T	T	T	T	T
F	F	F	T	T	T	T	T	T

Since the column of the truth table contains only T's

$P \rightarrow (Q \rightarrow R) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$ is a tautology.

Which need not be a tautology.

4. Explain the two types of quantifiers through example.

Solution:

Universal Quantifiers	Existential Quantifiers
<ul style="list-style-type: none"> The expression “all” is the universal quantifiers. We denote it by $(\forall x)$. The symbol $(\forall x)$ represents each of the following phrases, having the same meaning as “all” 	<ul style="list-style-type: none"> The expression “some” is the existential quantifiers. We denote it by $(\exists x)$. The symbol $(\exists x)$ represents each of the following phrases, having the same meaning ‘some’.
<ul style="list-style-type: none"> For all x 	<ul style="list-style-type: none"> For some x
<ul style="list-style-type: none"> For every x 	<ul style="list-style-type: none"> For x such that
<ul style="list-style-type: none"> For each x 	<ul style="list-style-type: none"> There exists an x such that
<ul style="list-style-type: none"> Every thing x is such that 	<ul style="list-style-type: none"> There is an x such that
<ul style="list-style-type: none"> Each thing x is such that 	<ul style="list-style-type: none"> There is atleast one x such that

5. Given an indirect proof of the theorem “if $3n+2$ is odd, then n is odd”.

Solution:

P: $3n+2$ is odd

Q: n is odd

Hypothesis: Assume that $P \rightarrow Q$ is false.

(ie) Assume that P is true and Q is false. (ie) n is not odd \Rightarrow n is even.

Analysis: If n is even then $n = 2k$ for some integer k .

$$3n+2 = 3(2k)+2 = 6k+2 = 3(3k+1).$$

Conclusion: We observe that the R.H.S value of $3n+2$ is divisible by 2. This means that $3n+2$ is even. This contradicts the assumption P is true. In view of this contradiction, we infer that the given conditional $P \rightarrow Q$ is true.

6. What are the contrapositive, the converse, and the inverse of the conditional statement.'If you work hard then you will be rewarded".

Solution:

$$P : \text{You work hard} \quad \neg P : \text{You will not work hard.}$$

$$Q : \text{You will be rewarded} \quad \neg Q : \text{You will not be rewarded.}$$

Converse: $Q \rightarrow P$, You will be rewarded only if you work hard.

Contrapositive: $\neg Q \rightarrow \neg P$, If you will not be rewarded then you will not work hard.

Inverse: $\neg P \rightarrow \neg Q$, If you will not work hard then you will not be rewarded.

7. Is $\neg p \wedge (p \vee q) \rightarrow q$ a tautology.

Solution: To Prove $\neg p \wedge (p \vee q) \rightarrow q \Leftrightarrow T$

$$\neg p \wedge (p \vee q) \rightarrow q \Leftrightarrow \neg(\neg p \wedge (p \vee q)) \vee q \quad (\text{conversion formula})$$

$$\Leftrightarrow p \vee \neg(p \vee q) \vee q$$

$$\Leftrightarrow \neg(p \vee q) \vee (p \vee q) \quad (\text{commutatively})$$

$$\Leftrightarrow T$$

8. Let $E = \{-1, 0, 1, 2\}$ denote the universe of discourse. If $p(x, y): x + y = 1$, find the truth

value of $(\forall x)(\exists y) p(x, y)$.

Solution:

Given $p(x, y): x + y = 1$ and the inverse of discourse is $E = \{-1, 0, 1, 2\}$

To find $(\forall x)(\exists y) p(x, y) = \forall x \exists y (x + y = 1)$ is T.

If $x = -1$ then $y = 2$ (ie) $\exists y = 2$

If $x = 0$, then $y = 1$ (ie) $\exists y = 1$

If $x = 1$, then $y = 0$ (ie) $\exists y = 0$

If $x = 2$, then $y = -1$ (ie) $\exists y = -1$

$\therefore (\forall x)(\exists y) (x + y = 1)$ is true.

\therefore the truth value is T.s

9. Show that $(p \rightarrow r) \wedge (q \rightarrow r)$ and $(p \vee q) \rightarrow r$ are logically equivalent. (N/D 2014)

Solution:

$$(p \rightarrow r) \wedge (q \rightarrow r) \equiv (\neg p \vee r) \wedge (\neg q \vee r) \equiv X, \text{ say}$$

$$(p \vee q) \rightarrow r \equiv \neg(p \vee q) \vee r \equiv (\neg p \wedge \neg q) \vee r \equiv Y, \text{ say}$$

We shall prove $X \equiv Y$ by forming truth table

p	q	r	$\neg p$	$\neg q$	$\neg p \vee r$	$\neg q \vee r$	X	$\neg p \wedge \neg q$	Y
T	T	T	F	F	T	T	T	F	T
T	T	F	F	F	F	F	F	F	F
T	F	T	F	T	T	T	T	F	T
T	F	F	F	T	F	T	F	F	F
F	T	T	T	F	T	F	F	F	F
F	T	F	T	T	T	T	T	T	T
F	F	T	T	F	T	T	T	F	T
F	F	F	T	T	T	T	T	T	T

Since the columns of X and Y have the truth values, they are logically equivalent (ie) $X \equiv Y$.

10. Find a counter example. If possible, to these universally quantified statements, whose universe of discourse for all variables consists of all integers.

(a) $\forall x \forall y (x^2 = y^2 \rightarrow x = y)$

(b) $\forall x \forall y (xy \geq x)$

Solution:

(a) $x = 3, y = -3$ ($\because x^2 = y^2$, but $x \neq y$)

(b) $x = 5, y = -2$ ($\because xy = -10$, but $xy \neq x$)

11. Construction a truth table for the compound proposition $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$

Solution:

$$(p \rightarrow q) \equiv (\neg p \vee q) \text{ and } \neg p \rightarrow \neg q \equiv p \vee \neg q$$

$$\therefore (\neg p \vee q) \leftrightarrow (p \vee \neg q) \equiv P, \text{ say}$$

The truth table is shown here

p	q	$\neg p$	$\neg q$	$\neg p \vee q$	$p \vee \neg q$	P
T	T	F	F	T	T	T
T	F	F	T	F	T	F
F	T	T	F	T	F	T
F	F	T	T	T	T	T

12. Define functionally complete set of connectives and give an example .

Solution:

Any set of connective in which every formula can be expressed an another equivalent formula containing connectives from this set is called functionally complete set of connective.

(OR)

A collection of logical operators is called functionally complete if every compound proposition is logically equivalent to a compound proposition involving only these logical operators.

Example: The set of connectives $\{\wedge, \neg\}$ and $\{\vee, \neg\}$ are functionally

complete $\{\neg\}, \{\vee\}, \{\wedge\}$ or $\{\wedge, \vee\}$ are not functionally complete.

Note : From the five connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$. We have obtained at least

two sets of functionally complete connectives.

UNIT II

COMBINATORICS

1. Find the recurrence relation of the sequence $s(n) = a^n : n \geq 1$

Solution:

$$S(n) = a^n ; n \geq 1$$

$$S(n-1) = a^{n-1}$$

$$S(n-1) = \frac{a^n}{a}$$

$$aS(n-1) = S(n)$$

\therefore The recurrence relation is $S(n) - aS(n-1) = 0 ; n \geq 1$

2. How many bit strings of length ten contain (i) exactly four 1's (ii) at least four 1's?

Solution:

(a) A bit string of length 10 can be considered to have 10 positions. These 10 positions should be filled with four 1's and 0's.

$$\therefore \text{No of required bit strings} = \frac{10!}{4!6!} = 210$$

(b) The ten positions are to be filled up with 4, 1's and 6, 0's (or) 5, 1's and 5, 0's etc (or) ten 1's and no 0's.

$$\therefore \text{No of required bit strings} = \frac{10!}{4!6!} + \frac{10!}{5!5!} + \frac{10!}{6!4!} + \frac{10!}{7!3!} + \frac{10!}{8!2!} + \frac{10!}{9!1!} + \frac{10!}{10!0!} = 848$$

$$1+2+3+\dots+n = \frac{n(n+1)}{2}$$

3. Use Mathematical induction to solve that

Solution:

$$1+2+3+\dots+n = \frac{n(n+1)}{2}$$

Let $P(n)$ denote the Proposition(or equation)

We have to prove that $P(n)$ is true for all $n \geq 1$.

Basic step:

$$\text{Here } n_0 = 1$$

$\therefore P(1)$ is the proposition.

$$\therefore P(1) \text{ is } 1 = \frac{1 \cdot (1+1)}{2} \Rightarrow 1 = 1. \text{ Which is true So, } P(1) \text{ is true.}$$

Inductive step: Assume $P(k)$ is true ($k \geq 1$)

$$\Rightarrow 1+2+3+\dots+k = \frac{k(k+1)}{2} \text{ is true(1)}$$

To Prove: $P(k+1)$ is true

$$\text{To prove } 1+2+3+\dots+k+(k+1) = \frac{(k+1)(k+2)}{2} \text{ is true}$$

$$\begin{aligned} \Rightarrow (1+2+3+\dots+k)+(k+1) &= \frac{k(k+1)}{2} + (k+1) \\ &= (k+1)\left(\frac{k}{2} + 1\right) = \frac{(k+1)(k+2)}{2} = R.H.S \end{aligned}$$

L.H.S:

$\therefore P(k+1)$ is true. Thus $P(n)$ is true $\Rightarrow P(k+1)$ is true. Hence by the first principle of induction

$$P(n) \text{ is true } \forall n \geq 1 \Rightarrow 1+2+3+\dots+n = \frac{n(n+1)}{2}$$

4. How many ways a $2 \times n$ rectangular board be tiled using 1×2 and 2×2 pieces?

Solution:

Let a_n be the number of ways of the $2 \times n$ rectangle be tiled by 1×2 and 2×2 tiles

If $n = 1$, $a_1 = 1$, since only one 1×2 tile

If $n = 2$, $a_2 = 2(1 \times 2)$ (or) $1(2 \times 2) = 2 + 1 = 3$ ways

If $n = 3$, $a_3 = 3(1 \times 2)$ (or) $1(2 \times 2)$ and $1(1 \times 2) = 3 + 2 = 5$ ways

If $n = 4$, $a_4 = 4(1 \times 2)$ (or) $2(2 \times 2)$ (or) $1(2 \times 2)$ and $2(1 \times 2) = 5 + 2 + 4 = 11$ ways

If $n = 5$, $a_5 = 5(1 \times 2 \text{ tiles})$ (or) $2(2 \times 2)$ and $1(1 \times 2)$ (or) $1(2 \times 2)$ and $3(1 \times 2) = 9 + 3 + 9 = 21$ ways

And so on.

$\therefore a_n$ is the n^{th}

Term of the sequence 1,3,5,11,21.....

5. State the principle of strong induction?

Solution:

It is sometimes convenient to replace the induction hypothesis $P(k)$ by the stronger assumption $P(1), P(2), P(3), \dots, P(k)$ are true.

The resulting principle known as the principle of strong mathematical induction.

Step 1: Inductive base: To prove $P(1)$ is true.

Step 2 Strong Inductive hypothesis: Assume that $P(n)$ is true for all integers $1 \leq n \leq k$

Step 3 Inductive step: To Prove that $P(k+1)$ is true on basis of the strong inductive hypothesis.

6. Find the recurrence relation satisfying the equation $y_n = A(3)^n + B(-4)^n$

Solution:

$$y_{n+2} = A(3)^{n+2} + B(-4)^{n+2}$$

$$= 9A(3)^n + 16B(-4)^n \dots \dots \dots (3)$$

Eliminating A and B from (1), (2) and (3), we get

$$\begin{vmatrix} y_n & 1 & 1 \\ y_{n+1} & 3 & -4 \\ y_{n+2} & 9 & 16 \end{vmatrix} = 0$$

$$y_n(48+36)-1(16y_{n+1}+4y_n+2)+1(9y_{n+1}-3y_{n+2})=0$$

$$84y_n - 16y_{n+1} - 4y_{n+2} + 9y_{n+1} - 3y_{n+2} = 0$$

$$84y_n - 7y_{n+1} - 7y_{n+2} = 0$$

$$12y_n - 7y_{n+1} - y_{n+2} = 0$$

$$y_{n+2} + y_{n+1} - 12y_n = 0$$

7. If seven colours are used to paint 50 bicycles, then show that atleast 8 bicycles will be the same colour

Solution:

Here Number of Pigeon=m = Number of bicycle = 50

Number of Holes = n = Number of colours = 7

By generalized Pigeon Hole principle, we get

$$\frac{50-1}{7}+1=8$$

Atleast 8 bicycles will have the same colour.

8. Solve the recurrence relation $y(k)-8y(k-1)+16y(k-2)=0$ for $k \geq 2$, where $y(2)=16$ and

$$y(3)=80$$

Solution:

The recurrence relation can be written as

$$y_k - 8y_{k-1} + 16y_{k-2} = 0$$

The characteristic equation is

$$r^2 - 8r + 16 = 0$$

$$(r - 4)^2 = 0$$

$$\Rightarrow r = 4, 4$$

∴ The solution is $y(k) = (\alpha_1 + \alpha_2 k)4^k$ (1)

Given $y_2 = 16$

Put $k=2$, in (1), we get

$$y(2) = (\alpha_1 + \alpha, 2)4^2 = 16$$

$$16(\alpha_1 + 2\alpha_2) = 16$$

Put $k=3$, in (1), we get

$$y(3) = (\alpha_1 + \alpha_2 \cdot 3) 4^3 = 80$$

$$64(\alpha_1 + 3\alpha_2) = 80$$

Solving (2) and (3), we get

Substituting (4) in (1), we get

$$y(k) = \left(\frac{1}{2} + \frac{1}{4}k \right) 4^k$$

$$= (2+k)4^{k-1}$$

Which is the requited solution

9. Find the recurrence relation satisfying the equation $y(k) = A(3)^k + B(-4)^k$

Solution:

Given: $y(k) = A(3)^n + B(-4)^n$ (1)

$$y_{n+1} = A3^{n+1} + B(-4)^{n+1}$$

$$y_{n+1} = 3A3^n - 4B(-4)^n \quad \dots \dots \dots \quad (2)$$

$$y_{n+2} = A3^{n+2} + B(-4)^{n+2}$$

$$= 9A3^n + 16B(-4)^n \quad \dots \dots \dots \quad (3)$$

Eliminating A and B from (1),(2) and (3), we get

$$\begin{vmatrix} y_n & 1 & 1 \\ y_{n+1} & 3 & -4 \\ y_{n+2} & 9 & 16 \end{vmatrix} = 0$$

$$y_n(48 + 36) - 1(16y_{n+1} + 4y_n + 2) + 1(9y_{n+1} - 3y_{n+2}) = 0$$

$$84y_n - 16y_{n+1} - 4y_{n+2} + 9y_{n+1} - 3y_{n+2} = 0$$

$$84y_n - 7y_{n+1} - 7y_{n+2} = 0$$

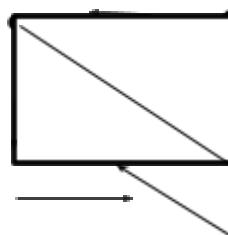
$$12y_n - y_{n+1} - y_{n+2} = 0$$

$$y_{n+1} + y_{n+2} - 12y_n = 0$$

Unit – III

GRAPHS

1. Is the directed graph given below strongly connected? why or why not?



Solution:

It is strongly connected graph.

For, the possible pairs of vertices of the graph are (V_1, V_2) (V_1, V_3) (V_1, V_4) (V_2, V_3) (V_2, V_4) and

(V_3, V_4)

i) Consider the pair (V_1, V_2)

Then there is a path from $V_1 \rightarrow V_2$ and path from $V_2 \rightarrow V_1$ via $V_2 \rightarrow V_3 \rightarrow V_1$

ii) Consider the pair (V_1, V_2)

Then there is a path from $(V_1 \rightarrow V_3)$, via $V_1 \rightarrow V_2 \rightarrow V_3$ and path from $V_3 \rightarrow V_1$. Similarly we can prove 1 for the remaining pair of vertices each vertices is reachable from other.

Therefore given graph is strongly connected.

2. Represent the graph using an adjacency matrix

0 1 0 1 0 1 0 1 0 0 0 1

1 0 1 0

Solution:

The adjacency matrices are 0 1 0 1 0 1 0 1 0 0 0 1 **Graph**

1 0 1 0

3. Give an example of a non eulerian graph which is Hamiltonian.

Solution:

$$\deg(v_1) = \deg(v_2) = \deg(v_3) = \deg(v_4) = 3$$

Here the vertices are not even degree .therefore given is non eulerian

graph .

$$\deg(v_1) + \deg(v_2) = n - 1$$

$$\deg(v_2) + \deg(v_3) = n - 1$$

$$\deg(v_3) + \deg(v_4) = n - 1$$

$$\deg(v_4) + \deg(v_1) = n - 1$$

The given graph is hamiltonian. the Hamiltonian circuit is v_1, v_2, v_3, v_4, v_1 .

4. State the handshaking theorem:

Solution:

The sum of all vertex degree is equal to twice the number of edges or the sum of the degrees of the vertices of G is even. Let W be the set of vertices of odd degree and U be the set of vertices of even

degree . then $\sum_{v \in U} \deg v = \sum_{v \in W} \deg v + \sum_{v \in U} \deg v = 2 |E|$

But $\sum_{v \in U} \deg v$ is even

Hence $\sum_{v \in W} \deg v$ is even.

5. Define isomorphism between two graphs.

Solution:

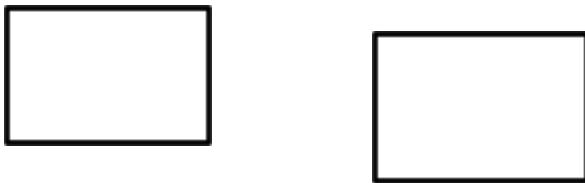
Isomorphism of graphs : let $G_1 = (V(G_1), E(G_1))$ and $G_2 = (V(G_2), E(G_2))$ be two graphs.

A function $f: G_1 \Rightarrow G_2$ is called an isomorphism if,

- i) f is one to one
- ii) f is onto
- iii) $(x, y) \in E(G_1)$ iff $f(x), f(y) \in E(G_2)$ two vertices x and y are adjacent in G_1 if $f(x)$ and $f(y)$ are adjacent in G_2 . if the graph G_1 is isomorphic to G_2 then we write $G_1 \approx G_2$.

6. Give an example of an euler graph

Solution:

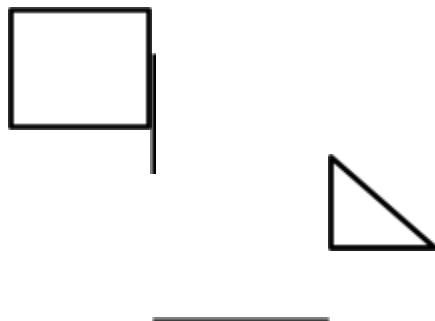


$$n = 10, e = 13, f = 5$$

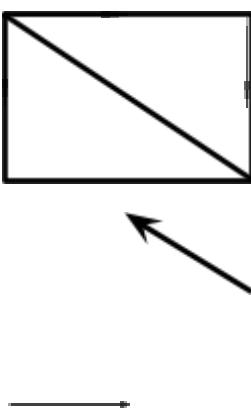
$$n - e + f = 2$$

7. Give an example of a non Eulerian graph which is Hamiltonian.

Solution:



8. Is the directed graph given below strongly connected? why or why not?



Solution:

It is strongly connected because for any two vertices u and v there is a path from u to v from u to v .

9 Draw a graph represented by the given adjacency matrix

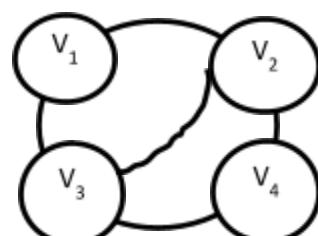
$$0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0$$

Solution: The given adjacency matrix is 4×4 and so the graph has 4 vertices v_1, v_2, v_3, v_4 say. Then $A =$

$$0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0$$

Type equation here.

10. PT identity element in a group is unique



Solution : property 1: The identity of a group is unique (or) if $(G, *)$ is a group and e is an identity of G , then no other element of G is an identity of G .

Proof: suppose that e_1 and e_2 are two identities of the group $(G, *)$

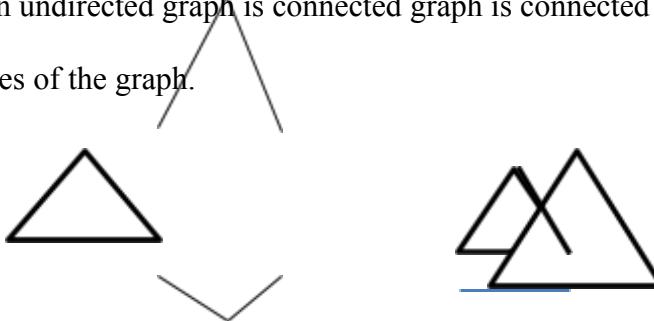
Now e_1 is the identity then $e_1 * e_2 = e_2 * e_1 = e_1$

Again e_2 is then identity then $e_2 * e_2 = e_2 = e_1 = e_1$

The identity is unique.

11. Define a connected and disconnected graph with example.

Solution: A graph G is connected if there is a path between any two of its vertices. otherwise it is disconnected. An undirected graph is connected graph is connected if there is a path between every pair of distinct vertices of the graph.



Connected graph

Disconnected graph

12. . How many edges are there in a graph with 10 vertices each of degree 5?

Solu:

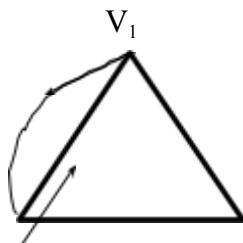
The sum of the degrees of the vertices is $10 \cdot 5 = 50$.

The handshaking theorem says $2m = 50$.

So the number of edges is $m = 25$.

13. Draw a graph with the following adjacency matrix $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$

Solu:



25. How many edges are there in a graph with 10 vertices each of degree 3?

Solu:

The sum of the degrees of the vertices is $10 \cdot 3 = 30$.

The handshaking theorem says $2m = 30$.

So the number of edges is $m=15$.

UNIT IV

ALGEBRAIC STRUCTURES

1. Show that every cyclic group is abelian.

Solution:

Let $(G, *)$ be a cyclic group generated by an element $a \in G$.

(ie) $G = \langle a \rangle$

Then for any two elements $x, y \in G$

We have $x = a^n, y = a^m$, where m, n are integer.

$$\therefore x * y = a^n * a^m = a^{n+m} = a^{m+n} = a^m * a^n = y * x$$

Thus, $(G, *)$ is abelian.

2. Find the idempotent elements of $G = \{1, -1, i, -i\}$ under the binary operation multiplication.

Solution:

(N/D 2016)

\otimes	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	I
I	i	-i	-1	1
-i	-i	i	1	-1

Here 1 is the identity element.

3. Prove that identity element in a group is unique.

(N/D 2015, M/J 2014)

Solution:

Let e_1 and e_2 be two identity elements of G .

$$e_1 * e_2 = e_2 \text{ (if } e_1 \text{ as identity) and}$$

$$e_1 * e_2 = e_1 \text{ (if } e_2 \text{ as identity)}$$

$$\therefore e_1 = e_2$$

4. Prove or disprove, “Every subgroup of an abelian group is normal”.

(N/D 2013)

Solution:

If G is a abelian, then every subgroup of G is normal in G ,

(as $Ha = \{ha / h \in H\} = \{ah / h \in H\}$ since $ha = ah = aH$, for all $a \in G$) .

5. Prove that if G is abelian group, then for all $a, b \in G$ $(a * b)^2 = a^2 * b^2$ (M/J 2013, A/M 2011)

Solution:

Let as assume that G is abelian. Hence, for $a, b \in G$. We have $a * b = b * a$

$$\text{Now } a^2 * b^2 = (a * a) * (b * b)$$

$$= a * [a * (b * b)]$$

$$= a * [(a * b) * b]$$

$$= a * [(b * a) * b]$$

$$= a * [b * (a * b)]$$

$$= (a * b) * (a * b)$$

$$= (a * b)^2$$

$$\therefore (a * b)^2 = a^2 * b^2$$

Conversely, assume that $(a * b)^2 = a^2 * b^2$

$$\Rightarrow (a * b) * (a * b) = (a * a) * (b * b)$$

$$\Rightarrow a * [b * (a * b)] = a * [a * (b * b)]$$

$$\Rightarrow b^*(a^*b) = a^*(b^*b) \quad (\text{left cancellation law})$$

$$\Rightarrow (b * a) * b = (a * b) * b$$

$$\Rightarrow b^* a = a^* b \quad \text{(right cancellation law)}$$

$\Rightarrow G$ is abelian.

6. Prove that the identity of a subgroup is the same as that of the group. (N/D 2012)

Solution:

Let e be the identity element of a group G and

Let e' be the identity element of a sub group H of G

From (1) and (2) we get

$$a^*e' = a^*e \Rightarrow e' = e$$

Therefore, the identity of a subgroup is the same as that of the group.

7. If 'a' is a generator of a cyclic group G, then show that a^{-1} is also a generator of G.

Solution:

(M/J 2012)

Let $G = \langle a \rangle$ be a cyclic group generated by 'a'

If $x \in G$, then $x = a^n$ for some $n \in \mathbb{Z}$

$$\therefore x = a^n = (a^{-1})^{-n}, (-n \in Z)$$

$\therefore 'a^{-1}'$ is also a generator of G .

8. Define homomorphism and isomorphism between two algebraic systems. (N/D 2011)

Solution:

Homomorphism:

If $\{X, \bullet\}$ and $\{Y, *\}$ are two algebraic systems, where \bullet and $*$ are binary (n-ary) operations, then a mapping $g : X \rightarrow Y$ is called a homomorphism if for any $x_1, x_2 \in X$.

$$g(x_1 \bullet x_2) = g(x_1) * g(x_2)$$

If a function g satisfying the above condition exists, then $\{Y, *\}$ is called the homomorphic image of $\{X, \bullet\}$, even though $g(X) \subseteq Y$.

Isomorphism:

If $g : \{X, *\} \rightarrow \{Y, *\}$ is one to one, onto, then g is called an isomorphism. In this case the algebraic systems $\{X, \bullet\}$ and $\{Y, *\}$ are said to be isomorphic.

9. Obtain all the distinct left-cosets of $\{[0], [3]\}$ in the group $(Z_6, +_6)$ and find their union.

Solution:

(N/D 2010)

Let $Z_6 = \{[0], [1], [2], [3], [4], [5], [6]\}$ be a group and $H = \{[0], [3]\}$ be a sub group of Z_6 under $+_6$ (addition mod 6)

The left cosets of H are

$$[0] + H = \{[0], [3]\} = H$$

$$[1] + H = \{[1], [4]\}$$

$$[2] + H = \{[2], [5]\}$$

$$[3] + H = \{[3], [6]\} = \{[3], [0]\} = \{[0], [3]\} = H$$

$$[4] + H = \{[4], [7]\} = \{[4], [1]\} = [1] + H$$

$$[5] + H = \{[5], [8]\} = \{[5], [2]\} = [2] + H$$

$$\therefore [0] + H = [3] + H = H$$

And $[1] + H = [4] + H, [2] + H = [5] + H$ are the distinct left cosets of H in Z_6

10. Show that the set of all elements a of a group $(G, *)$ such that $a * x = x * a$ for every $x \in G$ is a

subgroup of G .

(N/D2010)

Solution:

Let $H = \{a \in G \mid ax = xa, \forall x \in G\}$

As $ey = ye = y, \forall y \in G, e \in G$, H is a non empty.

Let x and z in H

Then $xy = yx$ and $zy = yz \quad \forall y \in G$

$$(xz)y = x(yz) \Rightarrow (yx)z = y(xz), \forall y \in G$$

$$\therefore xz \in H, \forall x, z \in H$$

$$x \in H \Leftrightarrow xy = yx,$$

$$\Leftrightarrow xy = yx, \quad \forall y \in G$$

$$\Leftrightarrow x^{-1}(xy)x^{-1} = x^{-1}(yx)x^{-1}, \quad \forall y \in G$$

$$\Leftrightarrow (x^{-1}x)(yx^{-1}) = (x^{-1}y)(xx^{-1}),$$

$$\Leftrightarrow yx^{-1} = x^{-1}y,$$

$$\Leftrightarrow x^{-1} \in H$$

Therefore, H is a subgroup.

11. Let $\langle M, *, e_M \rangle$ be a monoid and $a \in M$. If a is invertible, then show that its inverse is unique.

Solution:

(A/M 2011)

Let b and c be elements of M such that $a * b = b * a = e$ and

$$a * c = c * a = e \text{ since } b = b * e = b * (a * c) = (b * a) * c = e * c =$$

UNIT V

LATTICE AND BOOLEAN ALGEBRA

1. Define lattices homomorphism

Solution:

Let (L_1, \wedge, \vee) and $(L_2, *, \oplus)$ be given lattices. A mapping $f: L_1 \rightarrow L_2$ is called lattices homomorphism if for all $a, b \in L_1$.

i) $f(a \wedge b) = f(a) \cdot f(b)$

ii) $f(a \vee b) = f(a) \oplus f(b)$ a homomorphism which is 1-1 is called an isomorphism.

2. Prove the Boolean identity $a \cdot b + a \cdot b' = a$.

Solution:

To prove $a.b + a.b' = a$.

Consider LHS

$$a.b + a.b' = a(b+b')$$

$$a(b+b') = 1.a \text{ (since complement laws } (b+b') = 1)$$

$$= a \text{ RHS}$$

Hence proved.

3. Is a Boolean algebra contains five elements?justify your answer.

Solution:

No, there is no Boolean algebra with five elements.

Stone's representation theorem states that any Boolean algebra is isomorphic to power set algebra

$$\rho(s).$$

∴ The element in Boolean algebra should be of the form 2^n

4. Let $A = \{a, b, c\}$ and $P(A)$ be its power set. Draw a hasse diagram of $\langle P(A), \subseteq \rangle$.

Solution:

Let $A = \{a, b, c\}$ be a given set and $P(A)$ be its power set. Let \subseteq be the inclusion relation on the elements of $P(A)$. Clearly $(P(A), \subseteq)$ is a poset. The hasse diagram is given by

For the subset $B = \{\{b, c\}, \{b\}, \{c\}\}$ the upper bounds are $\{b, c\}$ and $\{a, b, c\}$ and \emptyset its lower bound

For the subset $C = \{\{a, c\}, \{c\}\}$ the upper bounds are $\{a, c\}$ and $\{a, b, c\}$ while the lower bounds are $\{c\}$ and \emptyset

5. PT $X = \{1, 2, 3, 4, 6, 24\}$ and R be a division relation. Find the hasse diagram of the poset $\langle X, R \rangle$

6. L et $X = \{1, 2, 3, 4, 5, 6\}$ and R be a relation define as $\langle X, Y \rangle \in R$. Iff $x - y$ is divisible by 3. Find the elements of a relation R

$$(iv) R = \{(x, y) : x - y \text{ is an integer}\}$$

Now, for every $x \in \mathbb{Z}$, $(x, x) \in R$ as $x - x = 0$ is an integer.

$\therefore R$ is reflexive.

Now, for every $x, y \in \mathbb{Z}$ if $(x, y) \in R$, then $x - y$ is an integer.

$\Rightarrow -(x - y)$ is also an integer.

$\Rightarrow (y - x)$ is an integer.

$\therefore (y, x) \in R$

$\therefore R$ is symmetric.

7. ST the absorption laws are valid a Boolean algebra.

Absorption Laws for Boolean Algebra

$$A + A \cdot B = A \text{ Proof from truth table,}$$

Inputs Output

$$A \ B \ AB \ A+A \cdot B$$

$$0 \ 0 \ 0 \ 0$$

$$0 \ 1 \ 0 \ 0$$

$$1 \ 0 \ 0 \ 1$$

$$1 \ 1 \ 1 \ 1$$

$$A + A \cdot B = A(1 + B) = A$$

Both A and $A+A \cdot B$ column is same. $Similarly, A(A + B) = A$ Proof from truth table,

$$A \ B \ A+B \ A \cdot X(A+B)$$

0 0 0 0

0 1 1 0

1 0 1 1

1 1 1 1

Both A and A.X or A(A+B) column are same.

$A(A + B) = A \cdot A + AB = A + A \cdot B = A(1 + B) = A$ De Morgan's Therem,

$$\overline{A + B} = \overline{A} \overline{B}$$

$$\text{and } \overline{AB} = \overline{A} + \overline{B}$$