KONGUNADU COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF MATHEMATICS
SUBJECT NAME: DISCRETE MATHEMATICS
SUBJECT CODE: MAS8351
UNIT -1

LOGIC AND PROOFS

1. Prove that P’P_)Q’Q_)R:R.

Solution:

Step | Premises | Rule [ Reasons

1 P>0 |P Given Premises

2 P P Given Premises
e T e, Poor=0
4 O—>R |P Given Premises
>R T o), 00 R=R

2. Without using truth table show that £ = (@ > P) < =P > (P> 0)

Solution:

LHS: P> (@ P)

Step | Premises Reasons




1 P— (0> P) Conditional as
disjunction

2 < =PV (=0Qv P) |Commutative law

3 & (=Qv P)v—P | Associative law

4| ®EQV(PV=P) | Pv-P T

S < (-OVvT) PvT=T

6 T ... (1)

RHS: (P> (P —>0)

Step | Premises Reasons

1 —(—=P)v (—~Pv Q) | Conditional as
disjunction

2 & Pv(=PvO) Double negation law

3 < Pv(=PVvO) Associative law

4 | e®v-PVO | Pv-PoT

5 < (TvO) PvT=T




From (1) &(2), we get

P>Q->P) (P> (P> Q)

3. Showthat £ > (@ 2> R) > (P> 0) > (P> R)) g, tautology.
Solution: Let A=P>(@—>R)—> (P> 0)—>(P—>R)

B=(P—->0)>(P—>R)

C=P->(@—->R

plQlrR|¥YPR| PP PR || B |A
T|T|T T T T T| T|T
T|T|F F T F FF|T
TIF|T T F T T|T|T
T|F |F T F F T T|T
F|T|T T T T T| T |T
F|T|F F T T T| T |T
F|F|T T T T T|T|T
F|F|[F T T T T| T | T

Since the column of the truth table contains only T’s

P>Q@>R)—>((P>0)>(P>R)) g, tautology.



Which need not be a tautology.

4. Explain the two types of quantifiers through example.

Solution:
Universal Quantifiers Existential Quantifiers
e The expression “all” is the universal e The expression “somel” is the

quantifiers. We denote it by (YY) The Existential quantifiers. We denote it by

(3%) The symbol (3¥) represents
symbol (V¥) represents each of the
each of the following phrases, having

following phrases, having the same . ,
the same meaning ‘some’.

meaning as “all”

e Forall x e For some x

e Forevery x e For x such that

e Foreach x e There exists an x such that

e Every thing x is such that e There is an x such that

e FEach thing x is such that e There is atleast one x such that

5. Given an indirect proof of the theorem “if 3n+2 is odd, then n is odd”.
Solution:
P: 3n+2 is odd
Q:nisodd

P—->0

Hypothesis: Assume that is false.

(ie) Assume that P is true and Q is false. (ie) n is not odd = nis even.

Analysis: If n is even then n= 2k for some integer k.



3n+2 = 3(2k)+2= 6k+2 = 3(3k+1).
Conclusion: We observe that the R.H.S value of 3n+2 is divisible by 2. This means that 3n+2 is

even. This contradicts the assumption P is true. In view of this contradiction, we infer that the

given conditiona is true.

. What are the contrapositive, the converse, and the inverse of the conditional statement.’If

you work hard then you will be rewarded”.

Solution:
P : You work hard =P : You will not work hard.
o : You will be rewarded —Q : You will not be rewarded.

Converse: € 7P ,You will be rewarded only if you work hard.
Contrapositive: —Q > =P JIf you will not be rewarded then you will not work hard.

Tnverse: 4 > ¢ If you will not work hard then you will not be rewarded.
. Is PPV 4 4 autology.

Solution: To Prove PPV @) —>q=T
APV > qgepalpvava (conversion formula)

Spv—(pvgvg

S=(pvevipve) (commutatively)



8. Let £=1"10.12} genote the universe of discourse. If P(X:¥):x +y=1 Jfind the truth

value of (VX)(ED/) p(x7 y) .

Solution:

Given p(x,y): x+y=1 and the inverse of discourse is E= {_ 1,0,1,2 }

To find (V@) p(x,»)=Vx Iy (x+y=1) o
Ifx=-1 theny=2 (ie) dy=2
Ifx=0, theny=1 (ie) 3% =1
Ifx=1, theny=0 (ie) dy=0
If x=2, theny=-1 (ie) dy=-1

S (V)E) (x+y =1 i true.

.. the truth value is T.s
9. Show that (P 2> 7A@ 1) apq (PVA) D7 gape logically equivalent. (N/D 2014)
Solution:

(P=>N)AGo)=(PVIA(gV =X oo

(Pv@)>r=—~(pvavr=(pr-gvr=Y o

We shall prove X =Y s by forming truth table



plqlr | g | VT | qVvT | | PATG |y
T|T|T| F F T T T F T
T|IT|F| F F F F F F F
T|F|T| F T T T T F T
T|F|F| F T F T F F F
F|T|T| T F T F F F F
F|IT|F| T T T T T T T
FIF|T| T F T T T F T
FIF|F| T T T T T T T

Since the columns of X and Y have the truth values, they are logically equivalent (ie) X =Y .
10. Find a counter example. If possible, to these universally quantified statements, whose

universe of discourse for all variables consists of all integers.

() Vx Vy (x* =y> 5> x=y)

(b) Vx Vy (xy2x) ¢

Solution:

(a) x=3, y=-3(.x"=y" , but x#Y)

(b) x=5 y=-2(.xy=-10, but xy#l x)

11. Construction a truth table for the compound proposition (P = 4) = (¢ = —p)

Solution:



(P=>9=(=PVq)gnq P>4=PV—q

v PV o)=L oy

The truth table is shown here

P14 —p —q —pVvqg | pv—q P
TI|T |F F T T T
TI|F |F T F T F
FI|IT|T F T F T
FI|F |T T T T T

12. Define functionally complete set of connectives and given an example .
Solution:
Any set of connective in which every formula can be expressed an another equivalent
formula containing connectives from this set is called functionally complete set of connective.
(OR)
A collection of logical operators is called functionally complete if every
compound proposition is logically equivalent to a compound proposition

involving only these logical operators.

Example: The set of connectives { > } and { V> } are functionally
complete VBN o { ™V 1 are not functionally complete.

Note : From the five connectives ”>¥> < _ We have obtained at least



two sets of functionally complete connectives.
UNIT 11

COMBINATORICS

1. Find the recurrence relation of the sequence ° () =a":nz1

Solution:
S(n)=a";n>1
S(n-1)=a""
S(n-1)=2

a

aS(n—-1)=8(n)

~. The recurrence relation is (M —aS(n— D=0;n21

2. How many bit strings of length ten contain (i) exactly four 1’s (ii) at least four 1’s?
Solution:
(a) A bit string of length 10 can be considered to have 10 positions. These 10 positions should be

filled with four 1’s and 0’s.
'
_ ﬂ =210

“* No of required bit strings 46!

(b) The ten positions are to be filled up with 4, 1’s and 6 , 0’s (or) 5, I’s and 5, 0’s etc (or) ten

1’s and no O’s.

10100100 100 100 10 100

. = +—+ +—t—+—+ = 848
“* No of required bit strings 46! 5!5! o4l 7131 821 91t 1010!



1+2+3+.....+n=

3. Use Mathematical induction to solve that 2
Solution:
142434 +n="01FD
Let P(n) denote the Proposition(or equation) 2

We have to prove that P(n) is true forall 7#=1,

Basic step:

Here n =1

- P(1) is the proposition.

1:@:1_1

S P(1)1s 2 . Which is true So, P(1) is true.

Inductive step: Assume P(k) is true (k>1)

_k(k+1)

=1+2+3+....+k

To Prove: P(k+1) is true

1+2+3+....+k+(k+1):w
To prove 2 is true
:%1+2+3+“"+k)+(k+1y:kM;4)+(k+D

~(k +1)(5+1J=W= RH.S
L.H.S: 2 2

<. P(k+1) is true. Thus P(n) is true = P(k+1) is true. Hence by the first principle of induction

1+2+3+

P(n) is true Vp>] = TetTIoTe. :



4. How many ways a 2xn rectangular board be tiled using 1x2 and 2x2 pieces?

Solution:

Let % be the number of ways of the 2xn rectangle be tiled by 1x2 and 2x2 tiles

if =L a =1 gnce only one 1x2 tile

17 =2 4y =2(1x2) () 12x ) =2+1=3 o

e n=3,a,=3(1x2)(0r)1(2x 2) and 1(1x2)=3+2=5

I ways

fr=4a :4(l><2)(0r)2(2><2)(0;’)1(2><2)and2(1><2):5+2+4:llWays

1 =95 as =5(1x2tiles) (or)2(2x2)and 1(1x2)(or)1(2x2) and 3(1x2) =9+3+9:21Ways

And so on.

. a. .
. “n is the n®

Term of the sequence 1,3,5,11,21..........
5. State the principle of strong induction?
Solution:
It is sometimes convenient to replace the induction hypothesis P(k) by the stronger
assumption P(1), P(2), P(3),.....P(k) are true.
The resulting principle known as the principle of strong mathematical induction.

Step 1: Inductive base: To prove P(1) is true.
Step: 2 Strong Inductive hypothesis: Assume that P(n) is true for all integers 1<7 < k

Step:3 Inductive step: To Prove that P(k+1) is true on basis of the strong inductive hypothesis.

6. Find the recurrence relation satisfying the equation Yy =AG)" +B(-4)



Solution:

Given: Y =AG)" +BC=4)" . (1)

Vo =AB3)" + B(-4)""

_9.4(3)" +16B(~4)" 3)

Eliminating A and B from (1), (2) and (3), we get

Yo 11
Va3 —4=0
Vi 9 106

yn (48+36)_1(16yn+1 +4yn +2)+1(9yn+1 _3yn+2) = 0

84)/” - 16.)/I1+I - 4yn+2 + 9yn+l - 3yn+2 = 0

84yn - 7yn+1 - 7yn+2 = O

lzyn _7yn+l _yl1+2 = 0

yn+2 +yn+1 _12yn :O

7. If seven colours are used to paint 50 bicycles, then show that atleast 8 bicycles will be the
same colour
Solution:
Here Number of Pigeon=m = Number of bicycle = 50
Number of Holes =n = Number of colours =7

By generalized Pigeon Hole principle, we get



50_1+1:8

Atleast 8 bicycles will have the same colour.
8. Solve the recurrence relation y(k)-8y(k-1)+16y(k-2)=0 for k=2 ,where y(2)=16 and
y(3)=80

Solution:

The recurrence relation can be written as

Ve =8y, +16y,,=0

The characteristic equation is

rP—8r+16=0
(r—4)2:0
=r=44

.. The solution is y(k)z(al +a2k)4k

Given V> =106

Put k=2, in (1), we get

J’(z):(al +a22)42 =16

16(a, +2a,)=16

Put k=3, in (1), we get



y(3)=(c, +,.34° =80

64(a, +3a, )= 80

o, =—.0,=
1 > 2
2

N
~
I~
~

Substituting (4) in (1), we get

11,
v(k) _[5+ij4

=(2+k)4""

Which is the requited solution

9. Find the recurrence relation satisfying the equation (k)=A(3)" +B(-4)"

Solution:

Given: YK)=4G)" +BC=4)" (1)
yn+1 = A3”+1 + B(_4)”+1

Yun =343 =4B(=4)" )

yn+2 =A3n+2 +B(_4)n+2

=943" +16B(~4)" 3)



Eliminating A and B from (1),(2) and (3), we get

v, 1 1
Y 3 —4=0
V2 9 16

¥,(48+36)=1(16y,., +4y, +2)+19y,., —3,.,) =0

84yn - 16yn+1 - 4yn+2 + 9yn+1 - 3yn+2 = 0

84yn _7yn+1 _7yn+2 :O

12yn_yn+1_yn+2 :0

yn+l +yn+2_12yn :0

Unit - 11
GRAPHS

1. Is the directed graph given below strongly connected? why or why not?

N

Solution:

It is strongly connected graph.



For, the possible pairs of vertices of the graph are (Vy, V,) (V, V3) (V. V,) (V.. V3) (V, V,)and

(V3 Vi)

i) Consider the pair (V,, V,)

Then there is a path from V,, V, and path from V, >V, viaV,_ V;,V,

ii) Consider the pair (V,, V,)
Then there is a path from (VtoV;),via V| V,_ Viand path from V,,V, Similarly we
can prove 1 for the remaining pair of vertices each vertices is reachable from other.
Therefore given graph is strongly connected.

2. Represent the graph using an adjacency matrix

010101010 001

10 10

Solution:

The adjacency matricesare 010101010 001 Graph

10 10

3. Give an example of a non eulerian graph which is Hamiltonian.

Solution:
deg(v,)= deg(v,)= deg(vs) =deg(v,)=3
% Here the vertices are not even degree .therefore given is non eulerian

deg(vi)t deg(vy) n-l

graph .

deg(vy)t deg(vs) n-l
deg(vy)+deg(vy) n-l

deg(vy)+ deg(v)) n-1



The given graph is hamiltonian.the Hamiltonian circuit is  v,v,,V3,V4, V;.
4. State the handshaking theorem:
Solution:
The sum of all vertex degree is equal to twice the number of edges or the sum of the degrees of the

vertices of G is even. Let W be the set of vertices of odd degree and U be the set of vertices of even

degree . then ) degdegv = ) degdegv + ) degdegv =2 |E|

vel vEW veUu

But ) degdegv iseven

veUu

Hence ), degdeg v iseven.
vew

5. Define isomorphism between two graphs.
Solution:
Isomorphism of graphs : let G, = (V(G,),E(G))) and G, = (V(G,),E(G,)) be two graphs.
Afunction f: G, => G, is called on isomorphism if,
1) F is one to one
i1) F is onto
111) (x,y) € E(G)) iff {(x),f(y) € E(G,) two vertices x and y are adjacent in G, if f(x) and
f(y) are adjacent in G, _if the graph G, is isomorphic to G, then we write G, . G,
6. Give an example of an euler graph

Solution:

n=10,e= 13,f=5



n—etf=2
7. Give an example of a non Eulerian graph which is Hamiltonian.

Solution:

AN

8. Is the directed graph given below strongly connected? why or why not?

™~

Solution:
It is strongly connected because for any two vertices u and v there is a path from u to v
from u to v.
9 Draw a graph represented by the given adjaceny matrix
01100110 01011010

Solution: The given adjacently matrix is 4x4 ans so the graph has 4 vertices v, v,,v3,v, say. Then A=
01100110 01011010

Type equation here. 0 o
10. PT identity element in a group is unique 0 o



Solution : property 1: The identity of a group is unique (or) if (G,*) is a group and ¢ is an identity of
G, then no other element of G is an identity of G.
Proof : suppose that e, and e, are two identities of the group (G,*)

Now e, is the identity then e, * e, =e,* e,=¢,
Again e,is then identity then e, * e,_e;« e,_ ¢,
The identity is unique.
11. Define a connected and disconnected graph with example.

Solution: A graph G is connected if there is a path between any two of its vertices. otherwise it is
disconnected. An undirected graph, is connected graph is connected if there is a path between every pair

of distinct vertices of the grapl.

JAN

~

Connected graph Disconnected graph

12. . How many edges are there in a graph with 10 vertices each of degree 5?
Solu:
The sum of the degrees of the vertices is 10 -5 = 50.
The handshaking theorem says 2m = 50.

So the number of edges is m= 25.

13. Draw a graph with the following adjacency matrix 010101010

Solu: Vi




25.How many edges are there in a graph with 10 vertices each of degree 3?
Solu:
The sum of the degrees of the vertices is 10 -3 = 30.
The handshaking theorem says 2m = 30.

So the number of edges is m=15.

UNIT 1V
ALGEBRAIC STRUCTURES

1. Show that every cyclic group is abelian.

Solution:
Let (G, *) be a cyclic group generated by an element ¢ G,

(ie) G=(a)

Then for any two elements %>V € G

_ n _ m
We have * =% >V =4 where m,n are integer.



x*y:an*aln:an+n1:am+n:am*an:y*x

Thus, (G,*)is abelian.

2. Find the idempotent elements of G ={L-Li~1} ynder the binary operation multiplication.

Solution: (N/D 2016)

4|1 |1 |-l

Here 1 is the identity element.
3. Prove that identity element in a group is unique. (N/D 2015,M/J2014)

Solution:

Let €1 and © be two identity elements of G.

e*e,=e (if © as identity) and

e e, =e (if © as identity)

4. Prove or disprove, “Every subgroup of an abelian group is normal”. (N/D 2013)

Solution:



If G is a abelian, then every subgroup of G is normal in G,

(as Ha=tha/he H} ={ah/h € H} G o ha=ah= aH, for all ¢ € G)

2 2412
5. Prove that if G is abelian group, then for all ©-0€ G (@*0)"=a"*b" " y;52013,A/M 2011)

Solution:

Let as assume that G is abelian. Hence, for 2 €0  We have ¢ *b=b*a

Now @ *b*=(a*a)*(b*b)
=a*[a*(b*b)]
=a*[(a*b)* D]
=a*[(b*a)*b]
=a*[b*(a*b)]
—(a*b)*(a*b)
=(a*b)’

s (a*b) =a’*b’

Conversely, assume that (a*b)’=a’*b’

= (a*b)*(a*b)=(a*a)*(b*b)

— a*[b*(a*b)] =a*[a*(b*b)]



= b*(a*b)=a*(b*b) (left cancellation law)

— (b*a)*b=(a*b)*b

=b*a=a*b (right cancellation law)

= @ is abelian.

6. Prove that the identity of a subgroup is the same as that of the group. (N/D 2012)
Solution:
Let e be the identity element of a group G and

Let e’ be the identity element of a sub group H of G

Let 4€H =a*e'=a ... Q)]

Let 4€H >aeG=a%e=a..... (2)

From (1) and (2) we get
a*e'=a*e=e'=e
Therefore, the identity of a subgroup is the same as that of the group.

7. If ‘a’ is a generator of a cyclic group G, then show that 'ais also a generator of G.

Solution: (M/J 2012)

Let G=(a) be a cyclic generated by ‘a’

If X€G then X=a" for some "€Z
sx=a"=(a")",(-neZ)

.1 —h
-4 s also a generator of G.



8. Define homomorphism and isomorphism between two algebraic systems. (N/D 2011)
Solution:

Homomorphism:

1f X% and ™} are two algebraic systems, where e and * are binary (n-ary)

gg:X—>Y xl,xzeX'

operations, then a mappin is called a homomorphism if for any

g(x, o x,)=g(x)*g(x,)

If a function g satisfying the above condition exists, then .} s called the homomorphic

image of X o , even though & (X))t

Isomorphism:

1f & X5 > (% g one to one, onto, then g is called an isomorphism. In this case the

X,

algebraic systems and ¥>"} are said to be isomorphic.

9. Obtain all the distinct left-cosets of {[0], [3]} in the group (Zs:+) and find their union.

Solution: (N/D 2010)

Let Zs ={[0},[1L[2L.[3].[4].[51.[6]} be a group and H ={[0],[31} be a sub group of Z

under 6 (addition mod 6)

The left cosets of H are

[0]+H ={[0].13]} = H

1+ H ={[1].[4]}



[2]+ H ={[2].[5]}

[31+ H ={[3].[6]} ={[3].[0]}={[0L.[3]} = H

[4]+ H ={[4L.[7]} ={[4].01;=[1]+ H

[51+H ={[5L[81} ={[5].[2]} =[2]+ H

~[0]+H =[3]+H=H

And [N+ H =[41+ H, 2]+ H=[5]+ H 410 the distinct left cosets of H in Z

10. Show that the set of all elements a of a group (G,* )such that a*x=x*a for every * € G isa

subgroup of G. (N/D2010)

Solution:

Let H={a € G\ax =xa,Vx e G}
As @=re=y,VyeG,eeG

> H is a non empty.

Letxand zin H

Then XV=¥xandzy=yzVyeG

(x2)y=x(yz)=>(x)z=y(xz2),Vy e G

SxzeH,Vx,zeH

xeHoxy=yx,

Sxy=yx, VyeG



sx (o) =x"Oox)x", VyeG

S ()T =(x"y) (),

<:>y)fl =x71y,

ox'eH

Therefore , H is a subgroup.

11. Let <M, *, e, > be a monoid and @ €M _If a invertible, then show that its inverse is

unique.

Solution: (A/M 2011)

Let b and ¢ be elements of M such that a*b=b*a=e ,q

% .
47C=C74=¢€ gince b=b*e = b*(a*c) = (b*a)*c = e*c =

UNIT V
LATTICE AND BOOLEAN ALGEBRA
1. Define lattices homomorphism
Solution:
Let (L,A, V) and (L,,*,D) be given lattices.A mapping f: L, -> L, is called lattices homomorphism
ifforallap € L,
1) f(a A b) =f(a).f(b)
i) f(a v b) =f(a) @f(b) a homomorphism which is 1-1 is called an isomorphism.
2. Prove the Boolean identity a.b +a.b’ =a .

Solution:



To prove a.b +a.b =a.
Consider LHS
a.b +a.b =a (b+b)
a (b+b) = l.a ( since complement laws (b+b) = 1)
=a RHS
Hence proved.
3. Is a Boolen algebra contains five elements?justify your answer.
Solution:
No, there is no boolean algebra with five elements.
Stone’s representation theorem state that any boolean algebra is isomorphic to power set algebra
p(s).

~ The element is Boolean algebra should be of the form 2"

4. Let A ={a,b,c} and P(A) be its power set.Draw a hasse diagram of < P(A) ,& >.
Solution:
Let A = {a,b,c} be a given set and P(A) be its power set.Let & be the inclusion relation on the

elements of P(A) .Clearly (P(A),<) is a poset . The hasse diagram is given by

AN

For the subset B = { {b,c},{b},{c}} the upper bounds are {b,c}and {a,b,c} and @ its lower bound
For the subset C = { {a,c} ,{c}} the upper bounds are {a,c} and {a,b,c} while the lower bounds are

{c} and @



5.PT X={1,2,3,4,6,24} and R be a division relation. Find the hasse diagram of the poset < X,R >

6. Let X={1,2,3,4,5,6} and R be a relation define as < X,Y> € R. Iff x — y is divisible by 3. Find the

elements of a relation R

(iv) R = {{x, y): x — y is an integer}

Now, for every xe Z, (x, x) €R as x — x = 0 is an integer.
-R is reflexive.

Now, for every x, ye Zif (x, y)€ R, then x — y is an integer.
= —(x — y) is also an integer.

= (y — x) is an integer.

~(y,x)€eR

«R is symmetric.

7.ST the absorption laws are valid a Boolean algebra .

Absorption Laws for Boolean Algebra

A+ A. B = A proof from truth table,

Inputs  Output

A B AB A+A.B
000 O
010 O
100 1
111 1

A+AB=A1+B)=A4
Similarly, A(A+B)=A

Both A and A+A.B column is same. Proof from truth table,

A B A+B A.X(A+B)



000 O

011 O
101 1
111 1

Both A and A.X or A(A+B) column are same.

A{A + B} —AA+AB=A+ A B= A{l + B} = A De Morgan’s Therem,

and A_JEE::E—I—:E_E‘



