CS 3500 - Programming Languages and Translators

Axiomatic Semantics: Hoare Logic

Axiom of Assignment:

$$\overline{\{P_{x\to E}\}_X := E\{P\}}$$

Rule of consequence:

$$\frac{P' \subseteq P, \{P\} s \{Q\}, Q \subseteq Q'}{\{P'\} s \{Q'\}}$$

Rule of composition:

Conditional Rule:

$${C \land P}$$
S1 ${Q}$, ${\neg C \land P}$ S2 ${Q}$ ${P}$ if C then S1 else S2 ${Q}$

While Rule:

$$\frac{\{C \land P\} s \{P\}}{\{P\} \text{ while C do S end } \{P \land \neg C\}}$$

Applying the Axioms of Assignment and Consequence

Example:

Compute the precondition of the following assignment:

$$\{?\}$$
a := 2 * (b - 5) $\{\alpha < 10\}$

Applying the Axiom of Assignment we get { 2* (b-5) < 10 } , which can be simplified to { b < 10 }

Example:

Compute the precondition of the following sequence of statements:

$$\{?\}$$
 a := 2*b+1; b := 4*a - 2 $\{b > 10\}$

Applying the Axiom of Assignment, the precondition of b := 4*a - 2 is $\{4*a - 2 > 10\}$, which can be simplified to $\{a > 3\}$.

Applying that postcondition to a := 2*b+1 yields $\{2*b+1>3\}$, which can be simplified to $\{b>1\}$.

So, by the composition rule the precondition for this sequence of statements is $\{b > 1\}$.

END.